Linear and non-linear analysis of the surface electrocardiogram during human ventricular fibrillation shows evidence of order in the underlying mechanism

Article

Abstract

Ventricular fibrillation (BF) is a poorly understood yet potentially lethal cardiac arrhythmia. The electrocardiogram (ECG) time series of VF is investigated by comparison of the linear and non-linear features of VF time series and surrogates in which internal correlations have been destroyed. From 40 ECG time series of human VF and 40 surrogate time series, three quantities are evaluated: the percentage of the linear time-frequency distribution (TFD) exceeding a threshold, the non-linear coarsegrained correlation dimension (Dcg), and the percentage of diagonal lines in the non-linear recurrence plot longer than 10 elements (D10). It is found that the mean (SD) percent threshold TFD and Dcg are higher for the surrogates (6.7% (1.3) and 5.3 (0.6)) than the VF time series (5.6% (0.7) and 3.8(0.9)) whereas the mean D10 is higher for the VF time series (49% (13)) than the surrogates (32% (7)). All of these differences are significant (p<0.0001) and indicate greater order in the VF time series than in the surrogates. It is therefore shown that both linear and non-linear signal analysis demonstrate order in the ECG time series of VF.

Keywords

Arrhythmia (mechanisms) Chaos Electrocardiogram (ECG) Sudden death Ventricular arrhythmias 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afonso, V. X., andTompkins, W. J. (1995): ‘Detecting ventricular fibrillation,’IEEE Eng. Med. Biol.,13, pp. 152–159CrossRefGoogle Scholar
  2. Casaleggio, A., Corana, A., Ranjan, R., andThakor, N. V. (1996): ‘Dimensional analysis of the electrical activity in fibrillating isolated hearts’,Int. J. Bifurcation Chaos,6, pp. 1547–1561MATHCrossRefGoogle Scholar
  3. Clayton, R. H., Murray, A., Whittam, A. M., andCampbell, R. W. F. (1991): ‘Automatic recording of ventricular fibrillation’,Comput. Cardiol., pp. 685–688Google Scholar
  4. Clayton, R. H., Murray, A., Higham, P. D., andCampbell, R. W. F. (1993): ‘Self-terminating ventricular tachyarrhythmias—a diagnostic dilemma?’,Lancet,341, pp. 93–95CrossRefGoogle Scholar
  5. Clayton, R. H., Murray, A., andCampbell, R. W. F. (1994): ‘Changes in the surface electrocardiogram during the onset of spontaneous ventricular fibrillation in man’,Eur. Heart J.,15, pp. 184–188Google Scholar
  6. Clayton, R. H., Campbell, R. W. F., andMurray, A. (1998): ‘Characteristics of multichannel ECG recordings during human ventricular tachyarrhythmias’,IEEE Eng. Med. Biol.,17, pp. 39–44CrossRefGoogle Scholar
  7. Cohen, L. (1989): ‘Time-frequency distributions—a review’,Proc. IEEE,77, pp. 941–981CrossRefGoogle Scholar
  8. Dzwonczyk, R., Brown, C. G., andWerman, H. A. (1990): ‘The median frequency of the ECG during ventricular fibrillation: Its use in an algorithm for estimating the duration of cardiac arrest’,IEEE Trans.,BME-37, pp. 640–646Google Scholar
  9. Eggenreich, U., Fleischmann, P. H., Stark, G., andWach, P. (1996): ‘Effects of propafenone on the median frequency of ventricular fibrillation in Langendorff perfused guinea-pig hearts’,Cardiovasc. Res.,31, pp. 926–931Google Scholar
  10. Garfinkel, A., Chen, P.-S., Walter, D. O., Karagueuzian, H. S., Kogan, B., Evans, S. J., Karpoukhin, M., Hwang, C., Uchida, T., Nwasokwa, O., Sager, P., andWeiss, J. N. (1997): ‘Quasiperiodicity and chaos in cardiac fibrillation’,J. Clin. Invest.,99, pp. 305–314CrossRefGoogle Scholar
  11. Grassberger, P., andProcaccia, I. (1983): ‘Measuring the strangeness of strange attractors’,Physica D,9, pp. 189–208MATHCrossRefMathSciNetGoogle Scholar
  12. Griffith, T. M. (1996): ‘Temporal chaos in the microcirculation’,Cardiovasc. Res.,31, pp. 342–358Google Scholar
  13. Hastings, H. M., Evans, S. J., Quan, W., Chong, M. L., andNwasokwa, O. (1996): ‘Non-linear dynamics in ventricular fibrillation’,Proc. Nat. Acad. Sci.,93, pp. 10495–10499CrossRefGoogle Scholar
  14. Herbschleb, J. N., Heethaar, R. M., Tweel, I. V. D., Zimmerman, A. N. E., andMeijler, F. L. (1979): ‘Signal analysis of ventricular fibrillation’,Comput. Cardiol., pp. 49–54Google Scholar
  15. Hlawatsch, F., andBoudreaux-Bartels, G. F. (1992): ‘Linear and quadratic time-frequency signal representations’,IEEE Signal Process. Mag., pp. 21–67Google Scholar
  16. Hoekstra, B. P. T., Diks, C. G. H., Allessie, M. A., andDegoede, J. (1995): ‘Nonlinear analysis of epicardial atrial electrograms of electrically induced atrial fibrillation in man’,J. Cardiovasc. Electrophysiol.,6, pp. 419–440CrossRefGoogle Scholar
  17. Holden, A. V., Poole, M. J., andTucker, J. V. (1995): ‘Reconstructing the heart’,Chaos Solitons Fractals,5, pp. 691–710MATHCrossRefGoogle Scholar
  18. Hoyer, D., Bauer, R., Walter, B., andZweiner, U. (1998): ‘Estimation of nonlinear couplings on the basis of complexity and predictability-a new method applied to cardiorespiratory coordination’,IEEE Trans.,BME-45, pp. 545–552Google Scholar
  19. Kaplan, D., andCohen, R. (1990): ‘Is fibrillation chaos?’,Circ. Res.,67, pp. 886–892Google Scholar
  20. Martin, W., andFlandrin, P. (1985): ‘Wigner-Ville analysis of nonstationary processes’,IEEE Trans.,ASSP-33, pp. 1461–1469Google Scholar
  21. Moe, G. K., Rheinboldt, W. C., andAbildskov, J. A. (1964): ‘A computer model of atrial fibrillation’,Am. Heart J.,67, pp. 200–220CrossRefGoogle Scholar
  22. Panfilov, A. V., andHolden, A. V. (1997): ‘Computational biology of the heart’ (John Wiley & Sons, Chichester)MATHGoogle Scholar
  23. Ravelli, F., andAntolini, R. (1990): ‘Analysis of the ventricular fibrillation ECG with methods from nonlinear dynamics’,Comput. Cardiol., pp. 501–504Google Scholar
  24. Rosenstein, M. T., Collins, J. J., andLuca, C. J. D. (1994): ‘Reconstruction expansion as a geometry-based framework for choosing proper delay times’,Physica D,73, pp. 82–98CrossRefMathSciNetGoogle Scholar
  25. Stewart, A. J., Allen, J. D., andAdgey, A. A. J. (1992): ‘Frequency analysis of ventricular fibrillation and resuscitation success,’Quart. J. Med.,85, pp. 761–769Google Scholar
  26. Swartz, J. F., Jones, J. L., andFletcher, R. D. (1993): ‘Characterization of ventricular fibrillation based on action potential morphology in the human heart’,Circ.,87, pp. 1907–1914Google Scholar
  27. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., andFarmer, J. D. (1992): ‘Testing for nonlinearity in time series: the method of surrogate data’,Physica D,58, pp. 77–94CrossRefGoogle Scholar
  28. Webber, C. L., andZbilut, J. P. (1994): ‘Dynamical assessment of physiological systems and states using recurrence plot strategies’,J. Appl. Physiol.,76, pp. 965–973Google Scholar
  29. Wiggers, C. J. (1940): ‘The mechanism and nature of ventricular fibrillation’,Am. Heart J.,20, pp. 399–412CrossRefGoogle Scholar

Copyright information

© IFMBE 1999

Authors and Affiliations

  1. 1.School of Biomedical SciencesUniversity of LeedsNewcastle upon TyneUK
  2. 2.Regional Medical Physics DepartmentFreeman HospitalNewcastle upon TyneUK

Personalised recommendations