Medical & Biological Engineering & Computing

, Volume 37, Issue 2, pp 155–161 | Cite as

Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles

  • U. Della Croce
  • A. Cappozzo
  • D. C. Kerrigan


Human movement analysis using stereophotogrammetry is based on the reconstruction of the instantaneous laboratory position of selected bony anatomical landmarks (AL). For this purpose, knowledge of an AL's position in relevant bone-embedded frames is required. Because ALs are not points but relatively large and curved areas, their identification by palpation or other means is subject to both intra- and inter-examiner variability. In addition, the local position of ALs, as reconstructed using anad hoc experimental procedure (AL calibration), is affected by photogrammetric errors. The intra- and inter-examiner precision with which local positions of pelvis and lower limb palpable bony ALs can be identified and reconstructed were experimentally assessed. Six examiners and two subjects participated in the study. Intra- and inter-examiner precision (RMS distance from the mean position) resulted in the range 6–21 mm and 13–25 mm, respectively. Propagation of the imprecision of ALs to the orientation of bone-embedded anatomical frames and to hip, knee and ankle joint angles was assessed. Results showed that this imprecision may cause distortion in joint angle against time functions to the extent that information relative to angular movements in the range of 10 degrees or lower may be concealed. Bone geometry parameters estimated using the same data showed that the relevant precision does not allow for reliable bone geometry description. These findings, together with those relative to skin movement artefacts reported elswhere, assist the human movement analyst's consciousness of the possible limitations involved in 3D movement analysis using stereophotogrammetry and call for improvements of the relevant experimental protocols.


Movement analysis Stereophotogrammetry Anatomical landmarks Bone geometry Anatomical landmark calibration Precision Joint kinematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backman, S. (1957): ‘The proximal end of the femur’,Acta Radiol., suppl. vol. 146Google Scholar
  2. Bell, A. L., Petersen, D. R., andBrand, R. A. (1990): ‘A comparison of the accuracy of several hip center location prediction methods’,J. Biomech.,23, pp. 617–621CrossRefGoogle Scholar
  3. Benedetti, M. G., Cappozzo, A., Catani, F., andLeardini, A. (1991): ‘Anatomical Landmark Definition and Identification’,CAMARC II Internal Report, March 15, 1994Google Scholar
  4. Borghese, N. A., andFerrigno, G. (1990): ‘An algorithm for 3-D automatic movement detection by means of standard TV cameras’,IEEE Trans. Biomed. Eng.,37, pp. 1221–1225CrossRefGoogle Scholar
  5. Cappello, A., Cappozzo, A., La Palombara, P. F., Lucchetti, L., andLeardini, A. (1997): ‘Multiple anatomical landmark calibration for optimal bone pose estimation’,Hum. Mov. Sci.,16, pp. 259–274CrossRefGoogle Scholar
  6. Cappozzo, A. (1984): ‘Gait analysis methodology’,Hum. Mov. Sci.,3, pp. 27–54CrossRefGoogle Scholar
  7. Cappozzo, A., Catani, F., Della Croce, U., andLeardini, A. (1995): ‘Position and orientation of bones during movement: anatomical frame definition and determination’,Clin. Biomech.,10, pp. 171–178CrossRefGoogle Scholar
  8. Cappozzo, A., Catani, F., Leardini, A., Benedetti, M. G., andDella Croce, U. (1996): ‘Position and orientation of bones during movement: experimental artefacts’,Clin. Biomech.,11, pp. 90–100CrossRefGoogle Scholar
  9. Cappozzo, A., Cappello, A., Della Croce, U., andPensalfini, F. (1997): ‘Surface-marker cluster design criteria for 3-D bone movement reconstruction’,IEEE Trans. Biom. Eng.,44, pp. 1165–1174CrossRefGoogle Scholar
  10. Challis, J. H. (1995): ‘A procedure for determining rigid body transformation parameters’,J. Biomech.,28, pp. 733–737CrossRefGoogle Scholar
  11. Cheze, L., Fregly, B.J., andDimnet, J. (1995): ‘A solidification procedure to facilitate kinematic analysis based on video system data’,J. Biomech.,28, pp. 879–884CrossRefGoogle Scholar
  12. De Luzio, K. J., Wyss, U. P., Li, J., andCostigan, P. A. (1993): ‘A procedure to validate three-dimensional motion assessment systems’,J. Biomech.,26, pp. 753–759CrossRefGoogle Scholar
  13. Ehara, Y., Fujimoto, H., Miyazaki, S., Tanaka, S., andYamamoto, S. (1995): ‘Comparison of the performance of 3D camera systems’,Gait & Posture,3, pp. 166–169CrossRefGoogle Scholar
  14. Fioretti, S., Cappozzo, A., andLucchetti, L. (1997): ‘Joint kinematics’,in Allard, P., Cappozzo, A., Lundberg, A., andVaughan, C. (Eds.), Three dimensional analysis of human locomotion (John Wiley, Chichester) pp. 173–189Google Scholar
  15. Fuller, J., Liu, L.-J., Murphy, M. C., andMann, R. W. (1997): ‘A comparison af lower-extremity skeletal kinematics measured using skin-and pin-mounted markers’,Hum. Mov. Sci.,16, pp. 219–242CrossRefGoogle Scholar
  16. Grood, E. S., andSuntay, W. J. (1983): ‘A joint coordinate system for the clinical description of three-dimensional motions: application to the knee’,Trans. ASME, J. Biomech. Eng.,105, pp. 136–144CrossRefGoogle Scholar
  17. Kadaba, M. P., Ramakrishnan, H. K., andWootten, M. E. (1990): ‘Measurement of lower extremity kinematics during level walking’,J. Orthop. Res.,8, pp. 383–392CrossRefGoogle Scholar
  18. Morris, J. R. W., andMacleod, A. (1990): ‘An investigation of the sources and characteristics of noise in a video-based kinematic measurement system’,in CAMARC II Internal Report: ‘Models, connections with experimental apparatus and relevant DSP techniques for functional movement analysis’Google Scholar
  19. Pennock, G. R., andClark, K. J. (1990): ‘On anatomy-based coordinate system for the description of the kinematic displacements in the human knee’,J. Biomech.,23, pp. 1209–1218CrossRefGoogle Scholar
  20. Ramakrishnan, H. K., andKadaba, M. P. (1991): ‘On the estimation of joint kinematics during gait’,J. Biomech.,24, pp. 969–977CrossRefGoogle Scholar
  21. Reinschmidt, C., Van Den Bogert, A. J., Lundberg, A., Nigg, B. M., Murphy, N., Stacoff, A., andStano, A. (1997): ‘Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers’,Gait & Posture,6, pp. 98–109CrossRefGoogle Scholar
  22. Small, C. F., Pichora, D. R., Bryant, J. T., andGriffiths, P. M. (1993): ‘Precision and accuracy of bone landmarks in characterising hand and wrist position,’J. Biomed. Eng.,15, pp. 371–378CrossRefGoogle Scholar
  23. Söderkvist, I., Wedin, P. A. (1993): ‘Determining the movements of the skeleton using well-configured markers’,J. Biomech.,13, pp. 1473–1477CrossRefGoogle Scholar
  24. Spoor, C. W., andVeldpaus, F. E. (1980): ‘Rigid body motion calculated from spatial coordinates of markers’,J. Biomech.,13, pp. 391–393CrossRefGoogle Scholar
  25. Steindler, A. (1955): ‘Kinesiology of the Human Body under Normal and Pathological Conditions’ (Charles C. Thomas, Springfield, IL)Google Scholar
  26. Veldpaus, F. E., Woltring, H. J., andDortmans, L. J. M. G. (1988): ‘A least-squares algorithm for the equiform transformation from spatial marker coordinates’,J. Biomech.,21, pp. 45–54CrossRefGoogle Scholar
  27. White, S. C., Yack, H. J., andWinter, D. A. (1989): ‘A three-dimensional musculo-skeletal model for gait analysis, anatomical variability estimates’,J. Biomech.,22, pp. 885–893CrossRefGoogle Scholar
  28. Woltring, H. J. (1994): ‘3-D attitude representation of human joints: a standardisation proposal’,J. Biomech.,27, pp. 1399–1414CrossRefGoogle Scholar
  29. Woltring, H. J., andFioretti, S. (1989): ‘Representation and photogrammetric calculation of 3-D joint movement’in Proceedings of First I.O.C. World Congress on Sport Science, pp. 350–351, US Olympic Committee, Colorado Springs, USAGoogle Scholar

Copyright information

© IFMBE 1999

Authors and Affiliations

  • U. Della Croce
    • 1
  • A. Cappozzo
    • 1
  • D. C. Kerrigan
    • 2
  1. 1.Dipartimento di Scienze BiomedicheUniversità degli Studi di SassariItaly
  2. 2.Department of Physical Medicine and Rehabilitation and Spaulding Rehabilitation HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations