Medical & Biological Engineering & Computing

, Volume 37, Issue 1, pp 119–124 | Cite as

Computer modelling of the adsorption of proteins on solid surfaces under the influence of double layer and van der waals energy

  • C. Ruggiero
  • M. Mantelli
  • A. Curtis
  • S. Zhang
  • P. Rolfe
Cellular Engineering

Abstract

The study of protein interactions with surfaces is important in many branches of biomedical engineering. A computer model has been set up in order to aid the understanding and prediction of the likelihood of protein adsorption at a surface and of coagulation between two proteins. In this model, a protein is represented as a hard sphere, neglecting conformation changes which may occur during the adsorption process. The sphere is assumed to be in a medium whose properties are described by the ionic strength, the pH and the dielectric permittivity. It is considered to interact both with an infinite plane, representing the surface, and with another sphere, representing another protein. The model focuses on the total interaction energy between a protein and a surface and between two proteins. The energy is expressed according to the DLVO theory of colloidal stability, which assumes that the adsorption behaviour of proteins at a surface depends, first, on the van der Waals interactions energy and, second, on the electrostatic double layer interaction energy. The conditions under which adhesion is prevented correspond to the presence of local extremes of the enegy function, whereas the conditions under which adhesion is likely to take place correspond to absence of local extremes.

Keywords

Computer modelling Protein adhesion DLVO theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamczyk, Z., Zembala, M., Siwek, B. andWarszynski, P. (1990): ‘Structure and ordering in localized adsorption of particles’J. Colloid Interf. Sci.,140, pp. 123–137CrossRefGoogle Scholar
  2. Adamson, A. W. (1984): ‘Electrical aspects of surface chemistry’ in ‘The physical chemistry of surfaces’ (Interscience Publishers, London), pp. 179–228Google Scholar
  3. Bafaluy, J., Senger, B., Voegel, J. C. andSchaaf, P. (1993): ‘Effect of hydrodynamic interactions on the distribution of adhering Brownian particles’,Phys. Rev. Lett.,70, pp. 623–626CrossRefGoogle Scholar
  4. Böhme, G., Krupp, H. andSchnable, W. (1969): ‘Adhesion of small gold spheres to silicon’, in ‘Molecular processes on solid surfaces’ (McGraw-Hill, New York), pp. 611–626Google Scholar
  5. Curtis, A. S. G. (1973): ‘Cell Adhesion’,Progr. Biophys. Mol. Biol.,27, pp. 315–386CrossRefGoogle Scholar
  6. Derjaguin, B. V. andLandau, L. D. (1941): ‘Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes’,Acta Phys. Chim., USSR 14, pp. 633–662Google Scholar
  7. Donners, W. A. B., Rijnbout, J. B. andVrij, J. (1977): ‘Light scattering from soap films—1 Determination of double-layer repulsion forces’,J. Colloid Interf. Sci.,61, pp. 249–260CrossRefGoogle Scholar
  8. Dutton, K., Thompson, S. andBarraclough, B. (1997): ‘An introduction to control systems modelling’, in ‘The art of control engineering’ (Addison Wesley, pp. 30–115)Google Scholar
  9. Hamaker, H. C. (1937): ‘The London-van der Waals attraction between spherical particles’,Physica,4, pp. 1058–1072CrossRefGoogle Scholar
  10. Hogg, R., Healy, T. W. andFuerstenau, D. W. (1966): ‘Mutual coagulation of colloidal dispersion’,Trans. Faraday Soc.,62, pp. 1638–1651CrossRefGoogle Scholar
  11. Israelachvili, J. (1992): ‘Elastrostatic forces between surfaces in liquids’, in ‘Intermolecular and surface forces’ (Academic Press, London), pp. 213–259Google Scholar
  12. Johnson, C. A., Wu, P. andLenhoff, A. M. (1994): ‘Electrostatic and Van der Waals contributions to protein adsorption: 2. modeling of ordered arrays’,Langmuir,10, pp. 3705–3713CrossRefGoogle Scholar
  13. Lange, H. (1957): ‘Uber die energetische wechselwirkung zwischen textifarsen und pigmentschmutz beim waschprozess’,Kolloidzeitschrift,154, pp. 103–110CrossRefGoogle Scholar
  14. Pashley, R. M. (1981a): ‘Hydration forces between mica surfaces in aqueous electrolyte solutions’,J. Colloid Interf. Sci.,80, pp. 153–162CrossRefGoogle Scholar
  15. Pashley, R. M. (1981b): ‘DLVO and hydration forces between mica surfaces in Li+ Na+, K+, and Cs+ electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties,’J. Colloid Interf. Sci.,83, pp. 531–545CrossRefGoogle Scholar
  16. Pashley, R. M. andIsraelachvili, J. N. (1984): ‘Forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions’,J. Colloid Interf. Sci.,97, pp. 446–455CrossRefGoogle Scholar
  17. Roth, C. M. andLenhoff, A. M. (1993): ‘Electrostatic and van der Waals contributions to protein adsorption: computation of equilibrium constants‘Langmuir,9, pp. 962–972CrossRefGoogle Scholar
  18. Senger, B., Schaaf, P., Bafaluy, F. J., Cuisinier, F. J. G., Talbot, J. andVoegel, J. C. (1994): ‘Adhesion of hard spheres under the influence of double layer, van der Waals, and gravitational potentials at a solid liquid interface’Proc. Natl. Acad. Sci. USA,91, pp. 3004–3008CrossRefGoogle Scholar
  19. Smith, C. P., Maeda, M., Atanasoska, L., White, H., andMcClure, D. J. (1988): ‘Ultrathin platinum films on mica and the measurement of forces at the platinum water interface’,J. Phys. Chem.,92, pp. 199–205CrossRefGoogle Scholar
  20. Tabor, D. andWinterton, R. H. S. (1968): ‘Surface forces: direct measurements of normal and retarded van der Waals forces’,Nature,219, pp. 1120–1124CrossRefGoogle Scholar
  21. Van Megen, W. andSnook, I. (1975): ‘A hard sphere model for order-disorder transitions in colloidal dispersion’,Chem. Phys. Lett.,35(3), pp. 399–402CrossRefGoogle Scholar
  22. Verwey, E. J. W. andOverbeek J. T. G. (1948): ‘Stability of colloids’, in ‘Theory of the stability of lyophobic colloids’,Matijevic, E. (ed) (Elsevier, Amsterdam), pp. 164–182Google Scholar
  23. Visser, J. (1976). Adhesion of colloidal particles’, in ‘Surface and colloid science’, Vol.8 (Wiley, New York), pp. 3–84Google Scholar
  24. Watanabe, A. andKitahara, A. (1984): ‘Electrical double layer’, in ‘Electrical phenomena at interfaces, fundamentals, measurement and applications’ (Marcel Dekker, New York), pp. 15–47Google Scholar
  25. Wojtaszczyk, P., Mann, E. K., Senger, B., Schaaf, P. andVoegel, J. C. (1995): ‘Statistical properties of surfaces covered by deposited particles’,J. Chem. Phys.,103(18), pp. 8285–8295CrossRefGoogle Scholar
  26. Yotsumoto, H. andYoon, R. (1993): ‘Application of extended DLVO theory. I. Stability of rutile suspension’,J. Colloid Interf. Sci.,157, pp. 426–433CrossRefGoogle Scholar

Copyright information

© IFMBE 1999

Authors and Affiliations

  • C. Ruggiero
    • 1
  • M. Mantelli
    • 1
  • A. Curtis
    • 2
  • S. Zhang
    • 3
  • P. Rolfe
    • 3
  1. 1.Department of Informatics, Systems and TelematicsUniversity of GenoaGenovaItaly
  2. 2.Centre for Cell Engineering, Joseph Black BuildingGlasgow UniversityUK
  3. 3.Biomedical Engineering & Medical PhysicsKeele UniversityUK

Personalised recommendations