Medical & Biological Engineering & Computing

, Volume 32, Issue 1, pp 19–26 | Cite as

Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models

  • K. Perktold
  • E. Thurner
  • Th. Kenner


Computer simulation of pulsatile non-Newtonian blood flow has been carried out in different human carotid artery bifurcation models. In the first part of the investigation, two rigid walled models are analysed, differing in the bifurcation angle (wide angle and acute angle bifurcation) and in the shape of both the sinus (narrow and larger sinus width) and the bifurcation region (small and larger rounding of the flow divider), in order to contribute to the study of the geometric factor in atherosclerosis. The results show a significant difference in the wall shear stress and in the flow separation. Flow recirculation in the sinus is much more pronounced in the acute angle carotid. An important factor in flow separation is the sinus width. In the second part of the study, flow velocity and wall shear stress distribution have been analysed in a compliant carotid artery bifurcation model. In the mathematical model, the non-Newtonian flow field and the idealised elastic wall displacement are coupled and calculated iteratively at each time step. Maximum displacement of approximately 6% of the diastolic vessel diameter occurs at the side wall of the bifurcation region. The investigation demonstrates that the wall distensibility alters the flow feld and the wall shear stress during the systolic phase. Comparison with corresponding rigid wall results shows that flow separation and wall shear stress are reduced in the distensible wall model.


Carotid artery bifurcation Geometric factor in atherogenesis Haemodynamics Numerical flow analysis Rigid wall and compliant wall model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anayiotos, A. (1990): ‘Fluid dynamics at a compliant bifurcation model,’ PhD Thesis, Georgia Institute of Technology, AtlantaGoogle Scholar
  2. Bharadvaj, B. K., Mabon, R. F., andGiddens, D. P. (1982a): ‘Steady flow in a model of the human carotid bifurcation. Part I—Flow visualization,’J. Biomech.,15, pp. 349–362CrossRefGoogle Scholar
  3. Bharadvaj, B. K., Mabon, R. F., andGiddens, D. P. (1982b): ‘Steady flow in a model of the human carotid bifurcation. Part II—Laser Doppler anemometer measurements,’J. Biomech.,15, pp. 363–378CrossRefGoogle Scholar
  4. Caro, C. G., Fitz-Gerald, J. M., andSchroter, R. C. (1971): ‘Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis,’Proc. Roy. Soc. Lond.,177, pp. 109–159CrossRefGoogle Scholar
  5. Cho, Y. I., andKensey, K. R. (1991): ‘Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1. steady flows,’Biorheol. Google Scholar
  6. Desyo, D. (1990): ‘Radiogrammetric analysis of carotid bifurcation: Hemodynamic-atherogenetic repercussions on surgical practice,’in Liepsch, D. (Ed.): ‘Biofluid mechanics’ (Springer-Verlag, Berlin) pp. 45–56Google Scholar
  7. Friedman, M. H., Deters, O. J., Mark, F. F., Bargeson, C. B., andHutchins, G. M. (1983): ‘Arterial geometry affects hemodynamics—a potential risk factor for atherosclerosis,’Atherosclerosis,46, pp. 225–231CrossRefGoogle Scholar
  8. Friedman, M. H., Bargeson, C. B., Deters, O. J., Hutchins, G. M., andMark, F. F. (1987): ‘Correlation between wall shear and intimal thickness at a coronary artery branch,’Atherosclerosis,68, pp. 27–33CrossRefGoogle Scholar
  9. Glagov, S., Zarins, C., Giddens, D. P., andKu, D. N. (1988): ‘Hemodynamics and atherosclerosis,’Arch. Pathol. Lab. Med.,112, pp. 1018–1031Google Scholar
  10. Hilbert, D. (1987a): ‘An efficient Navier-Stokes solver and its application to fluid flow in elastic tubes’ in ‘Numerical methods’. Colloquia Societatis János Bolyai, (North-Holland)50, pp. 423–431Google Scholar
  11. Hilbert, D. (1987b): ‘Ein Finite Elemente-Aufspaltungsverfahren zur numerischen Lösung der Navier-Stokes Gleichungen und seine Anwendung auf die Strömung in Rohren mit elastischen Wänden.’ Dissertation, Technical University of GrazGoogle Scholar
  12. Horsten, J. B. A. M., van Steenhoven, A. A., andvan Dongen, M. E. H. (1989): ‘Linear propagation of pulsatile waves in visco-elastic tubes’J. Biomech.,22, pp. 477–484CrossRefGoogle Scholar
  13. Ku, D. N., Giddens, D. P., Zarins, C. K., andGlagov, S. (1985): ‘Pulsatile flow and atherosclerosis in the human carotid bifuraction,’Arteriosclerosis,5, pp. 293–302Google Scholar
  14. Ku, D. N., andGiddens, D. P. (1987): ‘Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation’,J. Biomech.,20, pp. 407–421CrossRefGoogle Scholar
  15. Ku, D. N. (1988): ‘A review of carotid duplex scanning’,Echocardiog.,5, pp. 53–69Google Scholar
  16. Liepsch, D., andMoravec, S. (1984): ‘Pulsatile flow of non-Newtonian fluid in distensible models of human arteries’,Biorheol.,21, pp. 571–586Google Scholar
  17. Mark, F. F., Bargeson, C. B., Deters, O. J., andFriedman, M. H. (1989): ‘Variations in geometry and shear distribution in casts of human aortic bifurcations’,J. Biomech.,22, pp. 577–582CrossRefGoogle Scholar
  18. van Merode, T., Lodder, J., Smeets, F. A. M., Hoeks, A. P. G. andReneman, R. S. (1988): ‘Accurate noninvasive method to diagnose minor atherosclerotic lesions in carotid artery bulb,’Stroke,20, pp. 1336–1339Google Scholar
  19. Motomiya, M., andKarino, T. (1984): ‘Flow patterns in the human carotid artery bifurcation’,Stroke,15, pp. 50–56Google Scholar
  20. Nerem, R. M., andCornhill, J. F. (1980): ‘The role of fluid mechanics in artherogenesis’,ASME J. Biomech. Eng.,102, pp. 181–189CrossRefGoogle Scholar
  21. Nerem, R. M., andSeed, W. A. (1983): ‘Coronary artery geometry and its fluid mechanical implications’, Proc. Symp. on Fluid Dynamics as a Localizing Factor for Atherosclerosis (Springer Verlag, Berlin) pp. 51–59Google Scholar
  22. Nerem, R. M. (1984): ‘Atherogenesis: hemodynamics, vascular geometry, and the endothelium’,Biorheol.,21, pp. 565–569Google Scholar
  23. Perktold, K. (1987): ‘On numerical solution of three-dimensional flow problems’, Ber Math.-Stat. Sektion, Forschungsges. Joanneum Graz, 280, GrazGoogle Scholar
  24. Perktold, K., andResch, M. (1990): ‘Numerical flow studies in human carotid bifurcations: basic discussion of the geometric factor in atherogenesis’,J. Biomed. Eng.,12, pp. 111–123CrossRefGoogle Scholar
  25. Perktold, K., Nerem, R. M., andPeter, R. O. (1991a): ‘A numerical calculation of flow in a curved tube model of the left main coronary artery’,J. Biomech.,24, pp. 175–189CrossRefGoogle Scholar
  26. Perktold, K., Peter, R. O., andResch, M. (1991b): ‘Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation’,J. Biomech., pp. 409–420Google Scholar
  27. Perktold, K., Resch, M., andFlorian, H. (1991c): ‘Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model’,Trans. ASME J. Biomech. Ēng.,113, pp. 464–475Google Scholar
  28. Perktold, K., Peter, R. O., Resch, M., andLangs, G. (1991d): ‘Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: Numerical study of flow phenomena under different bifurcation angle’,J. Biomed. Eng.,13, pp. 507–515CrossRefGoogle Scholar
  29. Perktold, K., Peter, R. O., andGürtl, R. (1991e): ‘Numerical analysis of pulsatile local flow characteristics and wall shear stresses in compliant carotid artery bifurcation models’, Med. Razgl.,30, Suppl. 1, pp. 101–104Google Scholar
  30. Perktold, K., Hilbert, D., andSiekman, J. (1992): ‘Numerische Untersuchung der pulsatilen Strömung eines nicht-Newtonschen Fluides in einem elastischen Rohr’,ZAMM—Z. angew. Math. Mech.,72, pp. T373-T377Google Scholar
  31. Reneman, R. S., van Merode, T., Hide, P., andHoeks, A. P. G. (1985): ‘Flow velocity patterns in and distensibility of the carotid artery bulb in subjects of various ages,’Circ,71, pp. 500–509Google Scholar
  32. Reuderink, P. (1991): ‘Analysis of the flow in a 3D distensible model of the carotid artery bifurcation’. Ph.D. Thesis, Eindhoven Institute of Technology, The NetherlandsGoogle Scholar
  33. Rindt, C. C. M., van Steenhoven, A. A., andReneman, R. S. (1989). ‘Analysis of the three-dimensional flow field in the carotid artery bifurcation’. Ph.D. Thesis, Eindhoven Institute of Technology, The NetherlandsGoogle Scholar
  34. Rindt, C. C. M., van Steenhoven, A. A., Janssen, J. D., Reneman, R. S. andSegal, A. (1990): ‘A numerical analysis of steady flow in a 3D-model of the carotid artery bifurcation’,J. Biomech.,23, pp. 461–473CrossRefGoogle Scholar
  35. Zarins, C. K., Giddens, D. P., Bharadvaj, B. K., Sottiura, V. S., Mabon, R. F., andGlagov, S. (1983): ‘Carotid bifurcation atherosclerosis’,Circ. Res.,53, pp. 502–514Google Scholar

Copyright information

© IFMBE 1994

Authors and Affiliations

  • K. Perktold
    • 1
  • E. Thurner
    • 1
  • Th. Kenner
    • 2
  1. 1.Institute of MathematicsTechnical University GrazGrazAustria
  2. 2.Institute of PhysiologyUniversity GrazGrazAustria

Personalised recommendations