Microbial Ecology

, Volume 1, Issue 1, pp 104–119 | Cite as

Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria

  • Hans van Gemerden


The purpose of this study was to find a possible explanation for the coexistence of large and small purple sulfur bacteria in natural habitats. Experiments were carried out withChromatium vinosum SMG 185 andChromatium weissei SMG 171, grown in both batch and continuous cultures. The data may be summarized as follows: (a) In continuous light, with sulfide as growth rate-limiting substrate, the specific growth rate ofChr. vinosum exceeds that ofChr. weissei regardless of the sulfide concentration employed. Consequently,Chr. weissei is unable to compete successfully and is washed out in continuous cultures. (b) With intermittant light-dark illumination, the organisms showed balanced coexistence when grown in continuous cultures. The “steady-state” abundance ofChr. vinosum was found to be positively related to the length of the light period, and that ofChr. weissei to the length of the dark period. (c) Sulfide added during darkness is rapidly oxidized on subsequent illumination, resulting in the intracellular storage of reserve substances, which are later utilized for growth. The rate of sulfide oxidation/mg cell N/hr was found to be over twice as high inChr. weissei as inChr. vinosum. The observed coexistence may be explained as follows. In the light, with both strains growing, most of the sulfide will be oxidized byChr. vinosum [see (a)]. In the dark, sulfide accumulates. On illumination, the greater part of the accumulated sulfide will be oxidized byChr. weissei [see (c)]. A changed light-dark regimen should then have the effect as observed [see (b)]. These observations suggest that intermittant illumination may, at least in part explain the observed coexistence of both types of purple sulfur bacteria in nature.


Sulfide Specific Growth Rate Dilution Rate Continuous Culture Dark Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, J. F. 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates.Biotechnol. Bioeng. 10: 707–723.CrossRefGoogle Scholar
  2. 2.
    van Gemerden, H. 1968. Growth measurements ofChromatium cultures.Arch. Mikrobiol. 64: 103–110.PubMedCrossRefGoogle Scholar
  3. 3.
    van Gemerden, H. 1968 Utilization of reducing power in growing cultures ofChromatium.Arch. Mikrobiol 64: 111–117.PubMedCrossRefGoogle Scholar
  4. 4.
    van Gemerden, H., and H. W. Jannasch. 1971. Continuous culture of Thiorhodaceae. Sulfide and sulfur limited growth ofChromatium vinosum.Arch. Mikrobiol. 79: 345–353.PubMedCrossRefGoogle Scholar
  5. 5.
    Hansen, T. A., and H. van Gemerden. 1972. Sulfide utilization by purple nonsulfur bacteria.Arch. Mikrobiol. 86: 49–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Hansen, T. A., and H. Veldkamp. 1973.Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria.Arch. Mikrobiol. 92: 45–58.PubMedCrossRefGoogle Scholar
  7. 7.
    Hirsch, P. 1969. Growth and structure of the purple sulfur bacteriumThiopedia from natural sources and laboratory cultures.Bact. Proc. 1969: 32Google Scholar
  8. 8.
    Kaiser, P. 1966. Ecologie des bactéries photosynthétiques.Rev. Ecol. Biol. Sol. 3: 409–472.Google Scholar
  9. 9.
    Kondrat'eva, E. N. 1965.Photosynthetic Bacteria. (Translated from Russian.) Israel Program for Scientific Translations, Jerusalem.Google Scholar
  10. 10.
    Pfenning, N. 1961. Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurperbakterien.Naturwissenschaften 48: 136.CrossRefGoogle Scholar
  11. 11.
    Pfenning, N. 1962. Beobachtungen über das Schwärmen vonChromatium okenii.Arch. Mikrobiol. 42: 90–95.CrossRefGoogle Scholar
  12. 12.
    Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien.Zentr. Bakteriol. Parasitenk. Abt. I. Suppl. 1: 179–189.Google Scholar
  13. 13.
    Pfennig, N. 1967. Photosynthetic bacteria.Ann. Rev. Microbiol. 21: 285–324.CrossRefGoogle Scholar
  14. 14.
    Pfennig, N., and H. G. Trüper. 1969.Phototrophic Bacteria. G.S.F.-Bericht M32.Google Scholar
  15. 15.
    Schlegel, H. G., and N. Pfennig. 1961. Die Anreicherungskultur einiger Schwefelpurperbakterien.Arch. Mikrobiol. 38: 1–39.PubMedCrossRefGoogle Scholar
  16. 16.
    Sirevåg, R., and J. G. Ormerod. 1970. Carbon dioxide fixation in green sulphur bacteria.Biochem. J. 120: 399–408.PubMedGoogle Scholar
  17. 17.
    Thiele, H. H. 1968. Die Verwertung einfacher organischer Substrate durch Thiorhodaceae.Arch. Mikrobiol. 60: 124–138PubMedCrossRefGoogle Scholar
  18. 18.
    Trüper, H. G., and H. G. Schlegel. 1964. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells ofChromatium okenii.Ant. Leeuwenhoek 30: 225–238.CrossRefGoogle Scholar
  19. 19.
    Trüper, H. G. 1968.Ectothiorhodospira mobilis Pelsh, a photosynthetic sulfur bacterium deposting sulfur outside the cells.J. Bacteriol. 95: 1910–1920.PubMedGoogle Scholar
  20. 20.
    Trüper, H. G., and S. Genovese. 1968. Characterization of photosynthetic sulfur bacteria causing red water in lake Faro (Messina, Sicily).Limnol. Oceanogr. 13: 225–232.CrossRefGoogle Scholar
  21. 21.
    Trüper, H. G., and H. W. Jannasch 1968.Chromatium buderi Nov. Spec., eine neue Art der “grozen” ThiorhodaceaeArch.Mikrobiol. 61: 363–372.CrossRefGoogle Scholar
  22. 22.
    Van Niel, C. B. 1936. On the metabolism of the Thiorhodaceae.Arch. Mikrobiol. 7: 323–358.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Hans van Gemerden
    • 1
  1. 1.Laboratory of MicrobiologyUniversity of Groningen, Biological CenterHaren (Gr.)The Netherlands

Personalised recommendations