Advertisement

Journal of Plant Research

, Volume 111, Issue 2, pp 345–351 | Cite as

Molecular responses to water stress inArabidopsis thaliana

  • Kazuo Shinozaki
  • Kazuko Yamaguchi-Shinozaki
  • Tsuyoshi Mizoguchi
  • Takeshi Urao
  • Takeshi Katagiri
  • Kazuo Nakashima
  • Hiroshi Abe
  • Kazuya Ichimura
  • Quian Liu
  • Tokihiko Nanjyo
  • Yuichi Uno
  • Satoshi Luchi
  • Motoaki Seki
  • Takuya Ito
  • Takashi Hirayama
  • Koji Mikami
JPR Symposium

Abstract

Plants respond and adapt to environmental changes including drought, high salinity and low temperature. abscisic acid (ABA) plays important roles in these stress responses. A number of plant genes are induced by water stress, such as drought, high salinity and low temperature, and are thought to function in the stress tolerance and responses of the plant. At least four signal transduction pathways control these genes inArabidopsis thaliana: two are ABA-dependent, and two are ABA-independent. Acis-acting element named DRE (Dehydration Responsive Element) is involved in one of the ABA-independent signal transduction pathways, and its DNA binding proteins have been characterized. Drought- and ABA-inducible MYC and MYB homologues are involved in ABA-responsive gene expression inarabidopsis. Roles of thesecis andtrans-acting factors in water stress responses are discussed. In addition, a number of genes for protein kinases, enzymes involved in phosphatidyl inositol metabolism (PI turnover) and transcription factors are also induced by water stress, and thought to be involved in the stress signal transduction cascades. Possible signaling processes in water stress response are discussed.

Key words

Arabidopsis thaliana Dehydration Gene expression High salinity Low temperature Signal transduction Stress response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. andShinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell9: 1859–1868.PubMedCrossRefGoogle Scholar
  2. Bray, E.A. 1997. Plant responses to water deficit. Trends Plant Sci.2: 48–54.CrossRefGoogle Scholar
  3. Chang, C. 1996. the ethylene signal transduction pathway in Arabidopsis: an emerging paradigm? Trends Biol. Sci.21: 129–133.CrossRefGoogle Scholar
  4. Giraudat, J., Parcy, F., Bertauche, N., Gosti, F., Leung, J., Morris, P.-C., Bouvier-Durand, M. andVartanian, N. 1994. Current advances in abscisic acid action and signaling. Plant Mol. Biol.26: 1557–1577.PubMedCrossRefGoogle Scholar
  5. Hirayama, T., Ohto, C., Mizoguchi, T. andShinozaki, K. 1995. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress inArabidopsis thaliana. Proc. Nalt. Acad. Sci. USA92: 3903–3907.CrossRefGoogle Scholar
  6. Ingram, J. andBartels, D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.47: 377–403.PubMedCrossRefGoogle Scholar
  7. Iwasaki, T., Yamaguchi-Shinozaki, K. andShinozaki, K. 1995. Identification of acis-regulatory region of a gene inArabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol. Gen. Genet.247: 391–398.PubMedCrossRefGoogle Scholar
  8. Jonak, C., Kiegerl, M., Ligterink, W., Barker, P.J., Huskisson, N. S. andHirt, H. 1996. Stress signaling in plants: A MAP kinase pathway is activated by cold and drought. Proc. Natl. Acad. sci. USA93: 11274–11279.PubMedCrossRefGoogle Scholar
  9. Kakimoto, T. 1996. CKl1, a histidine kinase homolog implicated in cytokinin signal transduction. Science275: 982–985.CrossRefGoogle Scholar
  10. Kiyosue, T., Yamaguchi-Shinozaki, K. andShinozaki, K. 1994. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) inArabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol. Biol.25: 791–798.PubMedCrossRefGoogle Scholar
  11. Koizumi, M., Yamaguchi-Shinozaki, K., Tsuji, H. andShinozaki, K. 1993. Structure and expression of two genes that encode distinct drought-inducible cysteine proteases inArabidopsis thaliana. Gene129: 175–182.PubMedCrossRefGoogle Scholar
  12. Maeda, T., Takehara, M. andSaito, H. 1995. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science269: 554–558.PubMedGoogle Scholar
  13. McAinsh, M.R. andHetherington, A.M. 1998. Encoding specificity in Ca2+ signalling systems. Trends Plant Sci.3: 32–36.CrossRefGoogle Scholar
  14. Mizoguchi, T., Ichimura, K. andShinozaki, K. 1997. Environmental stress response in plants: the role of mitogen-activated protein kinases (MAPKs). Trends Biotech.15: 15–19.CrossRefGoogle Scholar
  15. Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K. andShinozaki, K. 1996. A gene encoding a MAP kinase kinase is induced simultaneously with genes for a MAP kinase and an S6 kinase by touch, cold and water stress inArabidopsis thaliana. Proc. Nalt. Acad. Sci. USA93: 765–769.CrossRefGoogle Scholar
  16. Nakashima, K., Kiyosue, T., Yamaguchi-Shinozaki, K. andShinozaki, K. 1997. A nuclear gene,erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence inArabidopsis thaliana. Plant J.12: 851–861.PubMedCrossRefGoogle Scholar
  17. Posas, F., Wurgler-Murphy, S.M., Maeda, T., Witten, T.C., Thai, T.C. andSaito, H. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in SLN1-YPD1-SSK1 ‘two component’ osmosensor. Cell86: 865–875.PubMedCrossRefGoogle Scholar
  18. Sheen, J. 1996. Ca2+-dependent protein kinase and stress signal transduction in plants. Science274: 1900–1902.PubMedCrossRefGoogle Scholar
  19. Shinozaki, K. andYamaguchi-Shinozaki, K. 1996. Molecular responses to drought and cold stress. Current Opinion in Biotech.7: 161–167.CrossRefGoogle Scholar
  20. Shinozaki, K. andYamaguchi-Shinozaki, K. 1997. Gene Expression and signal transduction in water-stress response. Plant Physiol.115: 327–334.PubMedCrossRefGoogle Scholar
  21. Shinozaki, K. andYamaguchi-Shinozaki, K. 1998. Molecular responses to drought stress.In K. Sato and N. Murata, eds., Stress Responses of Photosynthetic Organisms. Elsevier, Amsterdam, pp. 141–163.Google Scholar
  22. Stockinger, E.J., Glimour, S.J. andThomashow, M.F. 1997.Arabidopsis thaliana CBF1 encodes an AP2 domaincontaining transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA94: 1035–1040.PubMedCrossRefGoogle Scholar
  23. Thomashow, M.F. 1994.Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance.In E. Meyrowitz and C. Sommerville, eds.,Arabidopsis; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 807–834.Google Scholar
  24. Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N. andShinozaki, K. 1994. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses inArabidopsis thaliana. Mol. Gen. Genet.224: 331–340.Google Scholar
  25. Urao, T., Yamaguchi-Shinozaki, K., Urao, S. andShinozaki, K. 1993. An Arabidopsismyb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell5: 1529–1539.PubMedCrossRefGoogle Scholar
  26. Wu, Y., Kuzma, J., Maréchal, E., Graeff, R., Lee, C.H., Foster, R. andChua, N.-H. 1997. Abscisic acid signaling through cyclic ADP-ribose in plants. Science278: 2126–2130.PubMedCrossRefGoogle Scholar
  27. Wurgler-Murphy, S.M. andSaito, S. 1997. Two-component signal transducers and MAPK cascades. Trends Biochem. Sci.22: 172–176.PubMedCrossRefGoogle Scholar
  28. Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S. andShinozaki, K. 1992. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation inArabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol.33: 217–224.Google Scholar
  29. Yamaguchi-Shinozaki, K. andShinozaki, K. 1993a. Characterization of the expression of a desiccation-responsiverd29 gene ofArabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet.236: 331–340.PubMedCrossRefGoogle Scholar
  30. Yamaguchi-Shinozaki, K. andShinozaki, K. 1993b. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression ofrd22, a gene responsive to dehydration stress inArabidopsis thaliana. Mol. Gen. Genet.238: 17–25.PubMedGoogle Scholar
  31. Yamaguchi-Shinozaki, K. andShinozaki, K. 1994. A novelcis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell6: 251–264.PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan 1998

Authors and Affiliations

  • Kazuo Shinozaki
    • 1
  • Kazuko Yamaguchi-Shinozaki
    • 2
  • Tsuyoshi Mizoguchi
    • 1
  • Takeshi Urao
    • 2
  • Takeshi Katagiri
    • 1
  • Kazuo Nakashima
    • 2
  • Hiroshi Abe
    • 2
  • Kazuya Ichimura
    • 1
  • Quian Liu
    • 2
  • Tokihiko Nanjyo
    • 1
  • Yuichi Uno
    • 2
  • Satoshi Luchi
    • 1
  • Motoaki Seki
    • 1
  • Takuya Ito
    • 1
  • Takashi Hirayama
    • 1
  • Koji Mikami
    • 1
  1. 1.Laboratory of Plant Molecular Biology, Tsukuba Life Science CenterThe Institute of Physical and Chemical Research (RIKEN)TsukubaJapan
  2. 2.Biological Resources DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaJapan

Personalised recommendations