Journal of Plant Research

, Volume 111, Issue 2, pp 199–205

Floral scents of hawkmoth-pollinated flowers in Japan

  • Takashi Miyake
  • Ryohei Yamaoka
  • Tetsukazu Yahara
Original Articles

Abstract

Similarity among the floral scents of hawkmoth-pollinated plants was investigated with headspace samplings. Six of seven plant species belonging to different families were found to be rich in isoprenoids, among which linalool was the most common compound. Linalool showed rhythmicity with a nocturnal increase inLonicera japonica. These findings suggest that linalool is a common attractant for nocturnal hawkmoths. However, the composition of other isoprenoids, benzenoids and fatty acid derivatives varied markedly among the plant species examined. There was a significant correlation between species composition of flower-visiting hawkmoths and specific floral scents, suggesting that attractiveness to each hawkmoth species is dependent upon floral scent.

Key words

Floral volatile compounds Nocturnal scent emission Pollinator composition Sphingophilous flowers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenburger, R. andMatile, P. 1990. Further observations on rhythmic emission of fragrance in flowers. Planta180: 194–197.CrossRefGoogle Scholar
  2. Bergström, G., Birgersson, G., Groth, I. andNilsson, L.A. 1992. Floral fragrance disparity between three taxa of lady’s slipperCypripedium calceolus (Orchidaceae). Phytochem.31: 2315–2319.CrossRefGoogle Scholar
  3. Blight, M.M., Le Métayer, M., Delègue, M.H.P., Pickett, J.A., Marionpoll, F. andWadhams, L.J. 1997. Identification of floral volatiles involved in recognition of oilseed rape flowers,Brassica napus by honeybees,Apis mellifera. J. Chem. Ecol.23: 1715–1727.CrossRefGoogle Scholar
  4. Cantelo, W.W. andJacobson, M. 1979. Phenylacetaldehyde attracts moths to bladder flower and to blacklight traps. Environ. Entomol.8: 444–447.Google Scholar
  5. Creighton, C.S., McFadden, T.L. andCuthbert, E.R. 1973. Supplementary data on phenylacetaldehyde: an attractant for Lepidoptera. J. Econ. Entomol.66: 114–115.Google Scholar
  6. Dobson, H.E.M. 1993. Floral volatiles in insect biology.In E.A. Bernays, ed., Insect-Plant Interactions, vol. 5, CRC Press, Florida, pp. 47–81.Google Scholar
  7. Ghazoul, J. 1997. The pollination and breeding system ofDipterocarpus obtusifolius (Diptirocarpaceae) in dry deciduous forests of Thailand. J. Nat. Hist.31: 901–916.Google Scholar
  8. Grant, V. 1983. The systematic and geographical distribution of hawkmoth flowers in the temperate North American flora. Bot. Gaz.144: 439–449.CrossRefGoogle Scholar
  9. Gregg, K.B. 1983. Variation in floral fragrances and morphology: Incipient speciation in cycnoches? Bot. Gaz.144: 566–576.CrossRefGoogle Scholar
  10. Haber, W.A. andFrankie, G.W. 1989. A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica21: 155–172.CrossRefGoogle Scholar
  11. Harborne, J.B. 1993. Introduction to Ecological Biochemistry. Academic Press, London.Google Scholar
  12. Hayashi, N., Nishi, A., Murakami, T., Maeshima, K., Komae, H. andSakao, T. 1985. The scent substances of pierid butterflies (Hebomoia gluasippe Linnaeus) and the volatile components of their food plants (Crataeva religiosa Forst.). Z. Naturforsch.40c: 47–50.Google Scholar
  13. Haynes, K.F., Zhao, J. andLatif, A. 1991. Identification of floral compounds fromAbelia grandiflora that stimulate upwind flight in cabbage looper moths. J. Chem. Ecol.17: 637–646.CrossRefGoogle Scholar
  14. Heath, R.R., Landolt, P.J., Dueben, B. andLenczewski, B. 1992. Identification of floral compounds of night-blooming jessamine attractive to cabbage looper moths. Environ. Entomol.21: 854–859.Google Scholar
  15. Ikeda, T., Ohya, E., Makihara, H., Nakashima, T., Saitoh, A., Tate, K. andKojima, K. 1993. Olfactory responses ofAnaglyptus subfasciatus Pic andDemonax transilis Bates (Coleoptera: Cerambycidae) to flower scents. J. Jpn. For. Soc.75: 108–112.Google Scholar
  16. Inoue, K. 1983. Systematics of the genusPlatanthera (Orchidaceae) in Japan and adjacent regions with special reference to pollination. J. Fac. Sci. Univ. Tokyo Ill13: 285–374.Google Scholar
  17. Jakobson, H.B. andOlsen, C.E. 1994. Influence of climatic factors on emission of flower volatilesin situ. Planta192: 365–371.Google Scholar
  18. Jennings, W. andShibamoto, T. 1980. Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography. Academic Press, London.Google Scholar
  19. Jürgens, A., Witt, T. andGottsberger, G. 1996. Reproduction and pollination in Central European populations ofSilene andSaponaria species. Bot. Acta109: 316–324.Google Scholar
  20. Kaiser, R. 1991. Trapping, investigation and reconstruction of flower scents.In P.M. Müller and D. Lanparsky, eds., Perfumes: Art Science and Technology., Elsevier Applied Science, London, pp. 213–250.Google Scholar
  21. Kaiser, R. and Lamparsky, D. 1982. Constituants azotés en trace de quelques absolues de fleurs et leurs headspaces correspondants.In FEDAROM, ed., Proc. 8th Internat. Congress of Essential Oils, Cannes, 1980, Grasse, pp. 287–294.Google Scholar
  22. Kaiser, R. andTollsten, L. 1995. An introduction to the scent of Cacti. Flavour and Fragrance J.10: 153–164.Google Scholar
  23. Kawano, S., Odaki, M., Yamaoka, R., Oda-Tanabe, M., Takeuchi, M. andKawano, N. 1995. Pollination biology ofOenothera (Onagraceae). The interplay between floral UV-absorbancy patterns and floral volatiles as signals to nocturnal insects. Pl. Sp. Biol.10: 31–38.CrossRefGoogle Scholar
  24. Kite, G.C. andSmith, S.A.L. 1997. Inflorescence odour ofSenecio articulatus: temporal variation in isovaleric acid levels. Phytochem.45, 1135–1138.CrossRefGoogle Scholar
  25. Knudsen, J.T. andTollsten, L. 1993. Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth pollinated taxa. Bot. J. Linn. Soc.113: 263–284.CrossRefGoogle Scholar
  26. Knudsen, J.T. andTollsten, L. 1995. Floral scent in batpollinated plants: a case of convergent evolution. Bot. J. Linn. Soc.119: 45–57.Google Scholar
  27. Loughrin, J.H., Hamilton-Kemp, T.R., Andersen, R.A. andHildebrand, D.F. 1990. Volatiles from flowers ofNicotiana sylvestris, N. otophara andMalus x Domestica: headspace components and day/night changes in their relative concentrations. Phytochem.29: 2473–2477.CrossRefGoogle Scholar
  28. Loughrin, J.H., Hamilton-Kemp, T.R., Andersen, R.A. andHildebrand, D.F. 1991. Circadian rhythm of volatile emission from flowers ofNicotiana sylvestris andN. suaveolens. Physiol. Plant.83: 492–496.CrossRefGoogle Scholar
  29. Manly, B.F.J. 1991. Randomization and Monte Carlo methods in biology. Chapman and Hall, London.Google Scholar
  30. Matile, P. andAltenburger, R. 1988. Rhythms of fragrance emission in flowers. Planta174: 242–247.CrossRefGoogle Scholar
  31. Mookherjee, B.D., Trenkle R.W. andWilson, R.A. 1990. The chemistry of flowers, fruits and spices: live vs. dead a new dimension in fragrance research. Pure Appl. Chem.62: 1357–1364.Google Scholar
  32. Morgan, A.C. andLyon, S.C. 1928. Notes on amyl salicylate as an attractant to the tobacco hornworm moth. J. Econ. Entomol.21: 189–191.Google Scholar
  33. Nilsson, L.A. 1985. Characteristics and distribution of intermediates betweenPlatantera bifolia andP. chlorantha (Orchidaceae) in the Nordic countries. Nord. J. Bot.5: 407–419.Google Scholar
  34. Pellmyr, O. 1986. Three pollination morphs inCimicifuga simplex; incipient speciation due to inferiority in competition. Oecologia68: 304–307.CrossRefGoogle Scholar
  35. Pijl, L. van der. 1961. Ecological aspects of flower evolution. II. Zoophilious flower classes. Evolution15: 44–59.CrossRefGoogle Scholar
  36. Raguso, R.A. andPichersky, E. 1995. Floral volatiles fromClarkia breweri andC. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Pl. Syst. Evol.194: 55–67.CrossRefGoogle Scholar
  37. Schlotzhauer, W.S., Pair, S.D. andHorvat, R.J. 1996. Volatile constituents from flowers of Japanese honeysuckle (Lonicera japonica). J. Agric. Food Chem.44: 206–209.CrossRefGoogle Scholar
  38. Tollsten, L. andBergström, J. 1989. Variation and post-pollination changes in floral odours released byPlatanthera bifolia. Nord. J. Bot.9: 359–362.Google Scholar
  39. Tollsten, L. andKnudsen, J.T. 1992. Floral scent in dioeciousSalix (Salicaceae)—a cue determining the pollination system? Pl. Syst. Evol.182: 229–237.CrossRefGoogle Scholar
  40. Tollsten, L., Knudsen, J.T. andBergström, G. 1994. Floral scent in generalisticAngelica (Apiacaae)—an adaptive character? Biochem. Syst. Ecol.22: 161–169.CrossRefGoogle Scholar
  41. Wyatt, R. 1983. Pollinator plant interactions and the evolution of breeding systems.In L. Read, ed., Pollination Biology., Academic Press, New York, pp. 51–96.Google Scholar

Copyright information

© The Botanical Society of Japan 1998

Authors and Affiliations

  • Takashi Miyake
    • 1
  • Ryohei Yamaoka
    • 2
  • Tetsukazu Yahara
    • 1
  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityHakozaki, FukuokaJapan
  2. 2.Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan

Personalised recommendations