Advertisement

Riesz bases of solutions of Sturm-Liouville equations

  • Xionghui He
  • Hans Volkmer
Article

Abstract

This article concerns the stability of orthogonal bases of solutions of Sturm-Liouville equations with different types of initial conditions. The investigation is based on the stability of Riesz bases of cosines and sines in the Hibert space L2[0,π].

Math Subject Classifications

42C15 34L10 

Keywords and Phrases

Riesz bases of sines and cosines Sturm-Liouville equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Casazza, P. and Christensen, O. (1997). Perturbation of operators and applications to frame theory,J. Fourier Anal. Appl.,3, 543–557.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Duffin, R.J. and Euchas, J.J. (1942). Some notes on an expansion therem of Paley and Wiener,Bull. Am. Math. Soc.,48, 850–855.zbMATHCrossRefGoogle Scholar
  3. [3]
    Favier, S.J. and Zalik, R.A. (1995). On the stability of frames and Riesz bases,Applied Comp. Harm. Anal.,2, 160–173.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Hardy, G., Littlewood, J.E., and Polya, G. (1952)Inequalities, Cambridge University Press, London.zbMATHGoogle Scholar
  5. [5]
    Ince, E.L. (1956).Ordinary Differential Equations, Dover reprint, New York.Google Scholar
  6. [6]
    Kadec, M.I. (1964). The exact value of the Paley-Wiener constant,Soviet Math. Dokl.,5, 559–561.zbMATHGoogle Scholar
  7. [7]
    Katznelson, V.É. (1971). Exponential bases inL 2,Funct. Anal. Appl.,5, 31–38.CrossRefGoogle Scholar
  8. [8]
    Levitan, B.M. and Sargsjan, I.S. (1975). Introduction to Spectral Theory, Transl. Math. Monographs 39,Am. Math. Soc., Providence.zbMATHGoogle Scholar
  9. [9]
    Moissev, E.I. (1984). On the basis property of systems of sines and cosines,Soviet Math. Dokl.,29, 296–300.Google Scholar
  10. [10]
    Paley, R. and Wiener, N. (1934). Fourier Transforms in the complex domain,Am. Math. Soc. Colloq. Publ., Vol. 19,Am. Math. Soc., New York.zbMATHGoogle Scholar
  11. [11]
    Sedletskii, A.M. (1989). On convegence of nonharmonic Fourier Series in systems of exponentials, consines and sines,Soviet Math. Dokl.,38, 179–183.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Young, R.M. (1980).An Introduction to Nonharmonic Fourier Series, Academic Press, New York.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2001

Authors and Affiliations

  • Xionghui He
    • 1
    • 2
  • Hans Volkmer
    • 3
  1. 1.Department of Mathematical SciencesUniversity of Wisconsin-MilwaukeeMilwaukee
  2. 2.Department of Mathematics and Computer ScienceLambuth UniversityJackson
  3. 3.Department of Mathematical SciencesUniversity of Wisconsin-MilwaukeeMilwaukee

Personalised recommendations