Generalized dirac operators on nonsmooth manifolds and Maxwell's equations

  • Marius Mitrea


We develop a function theory associated with Dirac type operators on Lipschitz subdomains of Riemannian manifolds. The main emphasis is on Hardy spaces and boundary value problems, and our aim is to identify the geometric and analytic assumptions guaranteeing the validity of basic results from complex function theory in this general setting. For example, we study Plemelj-Calderón-Seeley-Bojarski type splittings of Cauchy boundary data into traces of ‘inner’ and ‘outer’ monogenics and show that this problem has finite index. We also consider Szegö projections and the corresponding Lp-decompositions. Our approach relies on an extension of the classical Calderón-Zygmund theory of singular integral operators which allow one to consider Cauchy type operators with variable kernels on Lipschitz graphs. In the second part, where we explore connections with Maxwell's equations, the main novelty is the treatment of the corresponding electro-magnetic boundary value problem by recasting it as a ‘half’ Dirichlet problem for a suitable Dirac operator.

Math Subject Classifications

primary 31C12, 42B20, 35F15, 42B30 secondary 58G20, 42B25, 78A25 

Keywords and Phrases

Dirac operators Hardy spaces Maxwell's equations Lipschitz domains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aronszajn, N. (1957). A unique continuation theorem for solutions of elliptic differential equations or inequalities of second order,J. Math.,36, 235–249.MATHMathSciNetGoogle Scholar
  2. [2]
    Bell, S. (1992).The Cauchy Transform, Potential Theory and Conformal Mapping, CRC Press LLC, Boca Raton, FI.Google Scholar
  3. [3]
    Bergh, J. and Löfström, J. (1976)Interpolation Spaces. An Introduction, Springer-Verlag.Google Scholar
  4. [4]
    Berline, N., Getzler, E., and Verne, M. (1991).Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, Heidelberg New York.MATHGoogle Scholar
  5. [5]
    Bojarski, B. (1979). The abstract linear conjugation problem and Fredholm pairs of subspaces, In Memoriam I.N. Vekua, Tbilisi University, Tbilisi, 45–60.Google Scholar
  6. [6]
    Booß-Bavnbek, B. and Wojciechowski, K.P. (1993).Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston, Basel, Berlin.MATHGoogle Scholar
  7. [7]
    Bourdaud, G. (1982).L p-estimates for certain non regular pseudo-differential operators,Comm. PDE,7, 1023–1033.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Calderbank, D. (1995).Geometrical Aspects of Spinor and Twistor Analysis, Ph.D. Thesis, University of Warwick.Google Scholar
  9. [9]
    Coifman, R., McIntosh, A., and Meyer, Y. (1982). L'intérgrale de Cauchy definit un opérateur borné surL 2 pour les courbes liptschitziennes.Annals of Math.,116, 361–388.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Cordes, H.O. (1956). Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben,Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl.,11, 239–258.MathSciNetGoogle Scholar
  11. [11]
    Dahlberg, B. and Kenig, C. (1987). Hardy spaces and the Neumann problem inL p for Laplace's equation in Lipschitz domains,Annals of Math.,125, 437–465.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Duren, P.L. (1970).Theory of H p Spaces. Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London.MATHGoogle Scholar
  13. [13]
    Fabes, E.B. and Kenig, C.E. (1981). On the Hardy spaceH 1 of aC 1 domain,Ark. Mat.,19, 1–22.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Fabes, E.B., Mendez, O., and Mitrea, M. (1998). Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains.J. Funct. Anal.,159, 323–368.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Fefferman, C. and Stein, E.M. (1972).H p spaces of several variables,Acta Math.,129, 137–193.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Frazier, M. and Jawerth, B. (1985). Decomposition of Besov spaces,Indiana Univ. Math. J.,34, 777–799.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Gilbert, J. and Murray, M.A. (1991).Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics.Google Scholar
  18. [18]
    Hoffman, K. (1988).Banach Spaces of Analytic Functions. Dover edition.Google Scholar
  19. [19]
    Hofmann, S. (1994). On singular integrals of Calderón-type in ℝn, and BMO.Revista Matemática Iberoamericana,10(3), 467–504.MATHGoogle Scholar
  20. [20]
    Jawerth, B. and Mitrea, M. (1995). Higher dimensional scattering theory onC 1 and Lipschitz domains.Am. J. Math.,117(4), 929–963.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Jerison, D. and Kenig, C. (1995). The inhomogeneous Dirichlet problem in Lipschitz domains,J. Funct. Anal.,130, 161–219.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    Kalton, N. and Mitrea, M. (1998). Stability results on interpolation scales of quasi-Banach spaces and applications,Trans. AMS,350, 3903–3922.MATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Kato, T. (1976).Perturbation Theory for Linear Operators, Springer-Verlag, Berlin.MATHGoogle Scholar
  24. [24]
    Kenig, C. (1980). WeightedH p spaces on Lipschitz domains,Am. J. Math.,102, 129–163.MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Kenig, C. (1994).Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Series in Mathematics, No. 83,Am. Math. Soc..Google Scholar
  26. [26]
    Kenig, C.E. and Pipher, J. (1987). Hardy spaces and the Dirichlet problem on Lipschitz domains,Rev. Mat. Iberoamericana,3(2), 191–247.MATHMathSciNetGoogle Scholar
  27. [27]
    Kumano-go, H. and Nagase, M. (1978). Pseudo-differential operators with nonregular symbols and applications,Funkcial Ekvac.,21, 151–192.MATHMathSciNetGoogle Scholar
  28. [28]
    Lawson Jr., H.B. and Michelson, M.L. (1989).Spin Geometry, Princeton Mathematical Series, Vol. 38, Princeton University Press, Princeton.MATHGoogle Scholar
  29. [29]
    Li, C., McIntosh, A., and Semmes, S. (1992). Convolution singular integrals on Lipschitz surfaces,J. Am. Math. Soc.,5(3), 455–481.MATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    McIntosh, A., Mitrea, D., and Mitrea, M. (1997). Rellich type identities for one-sided monogenic functions in Lipschitz domains and applications, inAnalytical and Numerical Methods in Quaternions and Clifford Analysis, Sprössig, W. and Gürlebeck, K., Eds., Technical University of Freiberg, 135–143.Google Scholar
  31. [31]
    McIntosh, A. and Mitrea, M. (1999). Clifford algebras and Maxwell's equations in Lipschitz domains,Math. Methods Appl. Sci.,22, 1599–1620.MATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    Meyer, Y. and Coifman, R. R. (1990).Ondelettes et Opérateurs, Vol. III, Hermann, editeurs des sciences et des arts, Paris.Google Scholar
  33. [33]
    Mitrea, D., Mitrea, M., and Pipher, J. (1997). Vector potential theory on Lipschitz domains in ℝ3 and applications to electromagnetic scattering,J. of Fourier Anal. Appl.,3, 131–192.MATHMathSciNetCrossRefGoogle Scholar
  34. [34]
    Mitrea, D., Mitrea, M., and Taylor, M. (2000). Layer potentials, the Hodge Laplacian and global boundary problems in non-smooth Riemannian manifolds to appear inMemoirs of AMS.Google Scholar
  35. [35]
    Mitrea, M. (1994).Clifford Wavelets, Singular Integrals, and Hardy Spaces, Lecture Notes in Mathematics, No. 1575, Springer-Verlag, Berlin, Heidelberg.MATHGoogle Scholar
  36. [36]
    Mitrea, M. (1994). Electromagnetic scattering on nonsmooth domains,Mathematical Research Letters,1(6), 639–646.MATHMathSciNetGoogle Scholar
  37. [37]
    Mitrea, M. (1995). The method of layer potentials in electromagnetic scattering theory on nonsmooth domains,Duke Math. J.,77, 111–133.MATHMathSciNetCrossRefGoogle Scholar
  38. [38]
    Mitrea, M. (1999). On Bojarski's index formula for nonsmooth interfaces,Electronic Research Announcements of the Am. Math. Soc.,5(1), 40–46.MATHMathSciNetCrossRefGoogle Scholar
  39. [39]
    Mitrea, M. and Taylor, M. (1999). Boundary layer methods for Lipschitz domains in Riemannian manifolds,J. Funct. Anal.,163, 181–251.MATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    Mitrea, M. and Taylor, M. (2000). Potential theory on Lipschitz domains in Riemannian manifolds:L p, Hardy, and Hölder space results, to appear inCommunications in Analysis and Geometry.Google Scholar
  41. [41]
    Mitrea, M. and Taylor, M. (2000). Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem,J. Funct. Anal.,176(1), 1–79.MATHMathSciNetCrossRefGoogle Scholar
  42. [42]
    Mitrea, M. and Taylor, M. (2000). Potential theory on Lipschitz domains in Riemannian manifolds: Hölder continuous metric tensors,Communications in PDE,25, 1487–1536.MATHMathSciNetGoogle Scholar
  43. [43]
    Taylor, M. (1991).Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston.MATHGoogle Scholar
  44. [44]
    Taylor, M. (1996).Partial Differential Equations, Vol. I–III, Springer-Verlag.Google Scholar
  45. [45]
    Taylor, M. (2000).Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Math. Surveys and Monographs, Vol. 81, AMS, Providence.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2001

Authors and Affiliations

  • Marius Mitrea
    • 1
  1. 1.Department of MathematicsUniversity of Missouri-ColumbiaColumbia

Personalised recommendations