Journal of Fourier Analysis and Applications

, Volume 6, Issue 5, pp 457–466

A littlewood-paley inequality for the Carleson operator

  • Elena Prestini
  • Per Sjölin


The Carleson operator is closely related to the maximal partial sum operator for Fourier series. We study generalizations of this operator in one and several variables.

Math Subject Classifications

42A50 42B20 42B25 

Keywords and Phrases

Fourier series maximal partial sum operator maximal singular integrals Littlewood-Paley inequality LP estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Carleson, L. (1966). On convergence and growth of partial sums of Fourier series,Acta Math. 111, 135–157.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Fefferman, C. (1973). Pointwise convergence of Fourier series,Ann. Math.,98, 551–571.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    García-Cuerva, J. and Rubio de Francia, J.L. (1985).Weighted Norm Inequalities and Related Topics, Mathematics studies, North-Holland.Google Scholar
  4. [4]
    Hunt, R.A. (1968).On the convergence of Fourier series, Orthogonal expansions and their continuous analogues, Proceedings of the Conference held at Southern Illinois University, Edwardsville, 1967. SIU Press, Carbondale, IL.Google Scholar
  5. [5]
    Prestini, E. Singular integrals on product spaces related to Carleson operator, preprint.Google Scholar
  6. [6]
    Rubio de Francia, J.L., Ruiz, F.J., and Torrea, J.L. (1986). Calderón-Zygmund theory for operator-valued kernels,Adv. Math.,62, 7–48.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Sjölin, P. (1971). Convergence almost everywhere of certain singular integrals and multiple Fourier series,Arkiv f. matematik,9, 65–90.MATHCrossRefGoogle Scholar
  8. [8]
    Stein, E.M. (1970).Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2000

Authors and Affiliations

  • Elena Prestini
    • 1
  • Per Sjölin
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly
  2. 2.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations