Advertisement

Measurement of electrical current density distribution within the tissues of the head by magnetic resonance imaging

  • H. R. GambaEmail author
  • D. T. Delpy
Article

Abstract

Images of the electrical current distribution in an intact piglet head, measured by MRI, are presented for the first time. Remarkable differences in the distribution of the electrical current between live and post mortem studies are found. After death, there is a decrease of 62% in the current reaching the brain, compared with the situation in the living animal. This reduction is associated with the increase in the brain impedance after death, which agrees with previous in vivo studies.

Keywords

Current density distribution MRI Electrical impedance Cerebral electrical impedance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, D. C. andBrown, B. H. (1994): ‘Applied potential tomography’,J. Phys. E. Sci. Instrum.,17, pp. 723–733CrossRefGoogle Scholar
  2. Cui, W., Ostrander L. E. andOstrander L, B. Y. (1990): ‘In vivo reflectance of blood and tissue as a function of light wavelength’,IEEE Trans.,BME-37, (6), pp. 632–639Google Scholar
  3. Duck, F. A. (1990): ‘Physical properties of tissue—a comprehensive reference book’ (Academic Press Limited, London)Google Scholar
  4. Gamba, H. R. (1996): ‘Measurement of electrical current density distribution within the tissues of the head by magnetic resonance imaging’, Ph.D. thesis, University of London, UKGoogle Scholar
  5. Geddes, L. A. andBaker, L. E. (1967): ‘The specific resistance of biological material—a compendium of data for the bio-medical engineer and physiologist’,Med. & Biol. Eng.,5, pp. 271–293CrossRefGoogle Scholar
  6. Geddes, L. A. andBaker, L. E. (1989): ‘Principles of applied biomedical instrumentation’ (Wiley, New York)Google Scholar
  7. Holder, D. S. (1992): ‘Electrical impedance tomography with cortical or scalp electrodes during global cerebral ischaemia in the anaesthetised rat’,Clin. Phys. Physiol. Meas.,13, (1), pp. 87–98CrossRefGoogle Scholar
  8. Holder, D. S. (1993): ‘Physiological constraints to imaging brain function with EIT and scalp electrodes’in Holder, D. S. (Ed.): ‘Clinical and physiological applications of electrical impedance tomography’, (UCL Press, UK) pp. 185–200Google Scholar
  9. Joy, M., Scott, G. andHenkelman, M. (1989): ‘In vivo detection of applied electric currents by magnetic resonance imaging’,Mag. Res. Imag.,7, pp. 89–94CrossRefGoogle Scholar
  10. Li, C.-L., Bak, A. F. andParker, L. O. (1968): ‘Specific resistivity of the cerebral cortex and white matter’,Experim. Neurol.,20, pp. 544–557CrossRefGoogle Scholar
  11. Linderkamp, O., Berg, D., Betke, K., Koferl, F., Kriegel, H. andRiegel, K. P. (1980): ‘Blood volume and hematocrit in various organs in newborn piglets’,Pediatr. Res.,14, pp. 1324–1327Google Scholar
  12. McArdle, F. J., Brown, B. H. andAngel, A. (1993): ‘Imaging cardiosynchronous impedance changes in the adult head’,in Holder, D. (Ed.): ‘Clinical and physiological applications of electrical impedance tomography’ pp. 177–183Google Scholar
  13. Patel, M. andHu, X. (1993): ‘Direct calculation of wrap- free phase image’,Proc. Soc. Mag. Res. Med.,2, p. 721Google Scholar
  14. Sakai, F., Nakazawa, K., Tazaki, Y., Katsumi, I., Hino, H., Igarashi, H. andKanda, T. (1985): ‘Regional cerebral blood volume and haematocrit measurement in normal human volunteers by single emission computed tomography’,J. Cereb. Blood Flow & Metab,5, pp. 207–213Google Scholar
  15. Scott, G. C., Joy, M. L. G., Armstrong, R. L. andHenkelman, R. M. (1991): ‘Measurement of nonuniform current density by magnetic resonance’,IEEE Trans.,MI-10, (3), pp. 362–374Google Scholar
  16. Scott, G. C., Joy, M. L. G., Armstrong, R. L. andHenkelman, R. M. (1992): ‘Sensitivity of magnetic-resonance current-density imaging’,J. Mag. Res.,97, pp. 235–254Google Scholar
  17. Thompson, J. D. M., Joy, M. L. G. andHenkelman, R. M. (1991): ‘Current density imaging in rabbit head and chest’,Proc. Soc. Mag. Res. Med., p. 1274Google Scholar
  18. van Harreveld, A. andOchs, S. (1956): ‘Cerebral impedance changes after circulatory arrest’,Am. J. Physiol.,187, pp. 180–192Google Scholar
  19. Webster, J. G. (1990): ‘Electrical impedence tomography’, Adam Hilger, UKGoogle Scholar
  20. Williams, L. R. andLeggett, R. W. (1989): ‘Reference values for resting blood flow to organs of man’,Clin. Physiol. Meas.,10, (3), pp. 187–217CrossRefGoogle Scholar
  21. Yip, G., Joy, M. L. G., Scott, G. C. andHenkelman, R. M. (1992): ‘In vivo current density imaging’,Proc. Soc. Mag. Res. Med., p. 3917Google Scholar
  22. Zhao, S., Dodd, N. J. F., Kaczynski, J., Hawnaur, J. M. andIsherwood, I. (1993): ‘In vivo MR imaging of electrical current density distribution in mouse tumour’,Proc. Soc. Mag. Res. Med., p. 1368Google Scholar

Copyright information

© IFMBE 1998

Authors and Affiliations

  1. 1.Department of Medical Physics & BioengineeringUniversity College of LondonLondonEngland, UK

Personalised recommendations