Journal of Fourier Analysis and Applications

, Volume 6, Issue 2, pp 153–170

Orthogonality criteria for compactly supported refinable functions and refinable function vectors

  • Jeffrey C. Lagarias
  • Yang Wang
Article

Abstract

A refinable function φ(x):ℝn→ℝ or, more generally, a refinable function vector Φ(x)=[φ1(x),...,φr(x)]T is an L1 solution of a system of (vector-valued) refinement equations involving expansion by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal if {φj(x−α):α∈ℤn, 1≤j≤r form an orthogonal set of functions in L2(ℝn). Compactly supported orthogonal refinable functions and function vectors can be used to construct orthonormal wavelet and multiwavelet bases of L2(ℝn). In this paper we give a comprehensive set of necessary and sufficient conditions for the orthogonality of compactly supported refinable functions and refinable function vectors.

Math Subject Classifications

42C10 42C15 

Keywords and Phrases

orthogonal refinable function orthogonal refinable function vector orthogonality criteria wavelet multiwavelet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cassels, J.W.S. (1957).An Introduction to Diophatine Approximations, Cambridge University Press.Google Scholar
  2. [2]
    Cerveau, D., Conze, J.P., and Raugi, A. (1996). Fonctions harmoniques pour un opérateur de transition en dimension>1.Bol. Soc. Bras. Mat.,27, 1–26.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Cohen, A. (1990). Ondelettes, analyses multirésolutions et filtres mirriors em quadrature.Ann. Inst. Poincaré,7, 439–459.MATHGoogle Scholar
  4. [4]
    Cohen, A., Daubechies, I., and Feauveau, J.C. (1992). Biorthogonal bases of compactly supported wavelets,Comm. Pure Appl. Math.,XLV, 485–560.MathSciNetGoogle Scholar
  5. [5]
    Cohen, A., Daubechies, I., and Plonka, G. (1997). Regularity of refinable function vectors.J. Fourier Anal. Appl.,3, 295–324.MATHMathSciNetGoogle Scholar
  6. [6]
    Cohen, A. and Sun, Q. (1993). An arithmetic characterisation of conjugate quadrature filters associated to orthonormal wavelet bases.SIAM J. Math. Anal.,24, 1355–1360.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Conze, J.P., Hervé, L., and Raugi, A. (1997). Pavages auto-affines, opérateur de transfert et critères de réseau dans ℝd,Bol. Soc. Bras. Mat.,28, 1–42.MATHCrossRefGoogle Scholar
  8. [8]
    Conze, J.P. and Raugi, A. (1990). Fonctions harmoniques pour un operateur de transition et applications,Bull. Soc. Math. France,118 273–310.MATHMathSciNetGoogle Scholar
  9. [9]
    Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets,Comm. Pure Appl. Math.,41, 909–996.MATHMathSciNetGoogle Scholar
  10. [10]
    Daubechies, I. (1992).Ten Lectures on Wavelets, SIAM, Philadelphia, PA.MATHGoogle Scholar
  11. [11]
    Daubechies, I. and Lagarias, J.C. (1991). Two-scale difference equations I: existence and global regularity of solutions,SIAM J. Appl. Math.,22, 1388–1410.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Donovan, G., Geronimo, J., Hardin, D., and Massopust, P. (1996). Construction of orthogonal wavelets using fractal interpolation functions,SIAM J. Math. Anal.,27, 1158–1192.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Flaherty, T. and Wang, Y. (1999). Haar-type multiwavelet bases and self-affine multi-tiles,Asian J. Math.,3(2), 387–400.MATHMathSciNetGoogle Scholar
  14. [14]
    Goodman, T.N.T. and Lee, S.L. (1994). Wavelets of multiplicity r,Trans. Am. Math. Soc.,342, 307–324.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Goodman, T.N.T., Lee, S.L., and Tang, W.S. (1993). Wavelets in wandering subspaces,Trans. Am. Math. Soc.,338, 639–654.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Gröchenig, K. (1994). Orthogonality criteria for compactly supported scaling functions,Appl. Comp. Harmonic Anal.,1, 242–245.MATHCrossRefGoogle Scholar
  17. [17]
    Gröchenig, K. and Hass, A. (1994). Self-similar lattice tillings,J. Fourier Anal. Appl.,1, 131–170.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    Hervé, L. (1994). Multi-resolution analysis of multiplicityd: applications to dyadic interpolation,Appl. Comput. Harmon. Anal.,1(4), 299–315.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    Heil, C. and Collela, D. (1996). Matrix refinement equations: existence and uniqueness,J. Fourier Anal. Appl.,2, 363–377.MATHMathSciNetGoogle Scholar
  20. [20]
    Hogan, T. (1998). A note on matrix refinement equations,SIAM J. Math. Anal.,29(4), 849–854.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Jia, R.-Q. and Shen, Z. (1994). Multiresolution and waveles,Proc. Edinburgh Math. Soc.,37, 271–300.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    Lagarias, J.C. and Wang, Y. (1995). Haar type orthonormal wavelet basis in ℝ2,J. Fourier Anal. Appl.,2, 1–14.MATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Lagarias, J.C. and Wang, Y. (1996). Self-affine tiles in ℝn.Adv. Math.,121, 21–49.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    Lagarias, J.C. and Wang, Y. (1997). Integral self-affine tiles in ℝn, part, II: lattice tilings.J. Fourier Anal. Appl.,3, 83–102.MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Lawton, W. (1991). Necessary and sufficient conditions for constructing orthonormal wavelet bases,J. Math. Phys.,32, 57–61.MATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    Lawton, W., Lee, S.L., and Shen, Z. (1997). Stability and orthonormality of multivariate refinable functions,SIAM J. Math. Anal.,28, 999–1014.MATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    Lian, J. (1998). Orthogonality, criteria for multi-scaling functions,Appl. Comput. Harmon. Anal.,5(3), 277–311.MATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    Mallat, S. (1989). Multiresolution analysis and wavelets,Trans. Am. Math. Soc.,315, 69–88.MATHMathSciNetCrossRefGoogle Scholar
  29. [29]
    Malone, D.L 2(ℝ) solutions of dilation equations and fourier-like transformations, preprint.Google Scholar
  30. [30]
    Newman, M. (1972).Integral Matrices, Academic Press, New York.MATHGoogle Scholar
  31. [31]
    Plonka, G. (1997). Necessary and sufficient conditions for orthonormality of scaling vectors, inMultivariate Approx. and Splines, Nürnberger, G., Schmidt, J.W., and Walz, G., Eds., ISNM, Vol. 125, Birkhäuser, Basel.Google Scholar
  32. [32]
    Shen, Z. (1998). Refinable function vectors,SIAM J. Math. Anal.,29, 235–250.MATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    Strang, G., Strela, V., and Zhou, D. (1999). Compactly supported refinable functions with infinite masks, in Contemporary Mathematics, L. Baggett and D. Larson, Eds., AMS.Google Scholar
  34. [34]
    Strichartz, R. and Wang, Y. Geometry of self-affine tiles I,Indiana J. Math.,48, No. 1, 1–23.Google Scholar

Copyright information

© Birkhäuser 2000

Authors and Affiliations

  • Jeffrey C. Lagarias
    • 1
    • 2
  • Yang Wang
    • 1
    • 2
  1. 1.Information Science ResearchAT&T Labs-ResearchFlorham Park
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlanta

Personalised recommendations