Advertisement

Model of respiratory sensation and wilful control of ventilation

  • Y. Oku
  • G. M. Saidel
  • N. S. Cherniack
  • M. D. Altose
Modelling

Abstract

A mathematical model has been developed that includes sensations of breathlessness and a dynamic CO2 respiratory controller. Breathing sensations, which are represented as a discomfort index, are assumed to depend on arterial PCO2 level, automatic and wilful motor commands and mechanoreceptor feedback. Wilful control is assumed to arise from cortical centres of the brain and is independent of the reflex control system. The bulbopontine respiratory controller produces the automatic motor command, which is determined by chemical and mechanical feedback. Simulations demonstrate how the controller output and breathing sensations change when wilful motor commands disturb spontaneous breathing. Simulations include isocapnic hyper- and hypoventilation and deliberate hypoventilation during CO2 rebreathing. Simulations are compared with experimental data from human subjects. Simulations predict that the discomfort index intensifies when ventilation is either voluntarily raised or lowered from the optimal level; and discomfort is greater when ventilation is lowered than when it is raised at a given level of PCO2. The simulated results agree with those obtained experimentally. The simulations suggest that respiratory drive integration may depend not only on the direct effects of chemical and mechanical feedback, but also on the perceptual consequences of these stimuli.

Keywords

Dyspnoea Model Wilful control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, L., Lane, R., Shea, S. A., Cockcroft, A., andGuz, A. (1985): ‘Breathlessness during different forms of ventilatory stimulations: a study of mechanisms in normal subjects and respiratory patterns,’Clin. Sci. Lond.,69, pp. 663–672Google Scholar
  2. Adams, L., Chronos, N., Lane, R. andGuz, A. (1986): ‘The measurement of breathlessness induced in normal subjects: individual differences,’ibid. 70, pp. 131–140Google Scholar
  3. Banzett, R. B., Lansing, R. W., Reid, M. B., Adams, L., andBrown, R. (1989): ‘Air hunger' arising from increased PCO2 in mechanically ventilated quadriplegics,’Respir. Physiol.,76, pp. 53–68CrossRefGoogle Scholar
  4. Bellville, J. W., Whipp, B. J., Kaufman, R. D., Swanson, G. D., Aqleh, A., andWiberg, D. M. (1979): ‘Central and peripheral chemoreflex loop gain in normal and carotid body-resected subjects,’J. Appl. Physiol.,46, pp. 843–853Google Scholar
  5. Chonan, T., Mulholland, M. B., Cherniack, N. S., andAltose, M. D. (1987): ‘Effects of constraining thoracic displacement and changes in chemical drive on the sensation of dyspnea,’ibid.,63, pp. 1822–1828Google Scholar
  6. Chonan, T., ElHefnawy, A. M., Simonetti, O. P., andChernlack, N. S. (1988): ‘Rate of elimination of excess CO2 in humans,’Respir. Physiol.,73, pp. 379–394CrossRefGoogle Scholar
  7. Chonan, T., Mulholland, M. B., Leitner, J., Altose, M. D., andCherniack, N. S. (1990): ‘Sensation of dyspnea during hypercapnia, exercise and voluntary hyperventilation,’J. Appl. Physiol.,68, pp. 2100–2106CrossRefGoogle Scholar
  8. Chonan, T., Mulholland, M. B., Altose, M. D., andCherniack, N. S. (1990): ‘Effects of changes in level and pattern of breathing on the sensation of dyspnea,’ibid.,,69, pp. 1290–1295Google Scholar
  9. Davenport, P. W., Frieman, W. A., Thompson, F. J. andFranzen, O. (1986): ‘Respiratory-related cortical potentials evoked by inspiratory occlusion in humans,’J. Appl. Physiol.,60, pp. 1843–1848Google Scholar
  10. Engeman, R. M., andSwanson, G. D. (1979): ‘Transient response of the Gemen-Miller respiratory oscillator model,’ibid.,,46, pp. 1191–1195Google Scholar
  11. Gandevia, S. C., andRothwell, J. C. (1987): ‘Activation of the human diaphragm from the motor cortex,’J. Physiol. 384, pp. 109–118Google Scholar
  12. Gandevia, S. C., andMacefield, G. (1989): ‘Projection of lowthreshold afferents from human interconstal muscles to the cerebral cortex,’Respir. Physiol. 77, pp. 203–214CrossRefGoogle Scholar
  13. Killian, K. J., Mahutte, K., andCampbell, E. J. M. (1981): ‘Magnitude scaling of externally added loads to breathing,’Am. Rev. Respir. Dis.,123, pp. 12–15Google Scholar
  14. Killian, K. J., andCampbell, E. J. M. (1983): ‘Dypsnea and exercise,’Annu. Rev. Physiol.,45, pp. 465–479CrossRefGoogle Scholar
  15. Killian, K. J., Gandevia, S. C., Summers, E., andCampbell, E. J. M. (1984): ‘Effect of increased lung volume on perception of breathlessness, effort, and tension,’J. Appl. Physiol.,57, pp. 686–691Google Scholar
  16. Murphy, K., Mier, A., Adams, L., andGuz, A. (1990): ‘Putative cerebral control involvement in the ventilatory response to inhaled CO2 in conscious man,’J. Physiol.,420, pp. 1–18Google Scholar
  17. Oku, Y., andSaidel, G. M. (1991): ‘Sensation and control of breathing: a dynamic model,’Ann. Biomed. Eng.,19, pp. 251–272Google Scholar
  18. Orem, J., andNetick, A. (1986): ‘Behavioral control of breathing in the cat,’Brain Res.,366, pp. 238–253CrossRefGoogle Scholar
  19. Plum, F. (1970): ‘Neurological integration of behavioral and metabolic control of breathing’in Porter, R. (Ed.): ‘Breathing, Hering-Breuer centenary symposium’ (Churchill, London) pp. 159–175Google Scholar
  20. Remers, J. E., Brooks, J. G., andTenney, S. M. (1968): ‘Effect of controlled ventilation on the tolerable limit of hypercapnia,’Respir. Physiol. 4, pp. 78–90CrossRefGoogle Scholar
  21. Schwartzstein, R. M. Simon, P. M., Weiss, J. W., Fencl, V., andWeinberger, S. E. (1989): ‘Breathlessness induced by dissociation between ventilation and chemical drive,’Am. Rev. Respir. Dis.,139, pp. 1231–1237Google Scholar
  22. Shannon, R. (1986): ‘Reflexes from respiratory muscles and costvertebral joints,’in Cherniak, N. S., andWiddicombe, J. G. (Eds.): ‘Handbook of physiology, Section 3: the respiratory system, Vol. II: Control of breathing’ (Am. Physiol. Soc., Washington, DC) pp. 431–447Google Scholar
  23. Wasserman, K., Whipp, B. J., andCasaburi, R. (1986): ‘Respiratory control during exercise,’in Cherniack, N. S. andWiddicombe, J. G. (Eds.): ‘Handbook of physiology, Section 3: the respiratory system, Vol. II: Control of breathing’ (Am. Physiol, Soc., Washington, DC), pp. 595–619Google Scholar

Copyright information

© IFMBE 1995

Authors and Affiliations

  • Y. Oku
    • 1
    • 2
  • G. M. Saidel
    • 2
  • N. S. Cherniack
    • 1
  • M. D. Altose
    • 1
    • 3
  1. 1.Department of MedicineCase Western Reserve UniversityUSA
  2. 2.Department of Biomedical EngineeringCase Western Reserve UniversityUSA
  3. 3.Cleveland VA Medical CenterClevelandUSA

Personalised recommendations