BIT Numerical Mathematics

, Volume 38, Issue 4, pp 751–780 | Cite as

Convergence results for the MATLAB ode23 routine

  • H. Lamba
  • A. M. Stuart


We prove convergence results on finite time intervals, as the user-defined tolerance τ→0, for a class of adaptive timestepping ODE solvers that includes the ode23 routine supplied in MATLAB Version 4.2. In contrast to existing theories, these convergence results hold with error constants that are uniform in the neighbourhood of equilibria; such uniformity is crucial for the derivation of results concerning the numerical approximation of dynamical systems. For linear problems the error estimates are uniform on compact sets of initial data. The analysis relies upon the identification of explicit embedded Runge-Kutta pairs for which all but the leading order terms of the expansion of the local error estimate areO(∥f(u∥)2).

AMS subject classification

34C35 65L07 65L20 65L50 

Key words

Error control adaptivity convergence tolerance proportionality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MATLAB, The Math Works Inc., Natick, MA.Google Scholar
  2. 2.
    P. Bogacki and L. Shampine,A 3(2) pair of Runge-Kutta formulas, Appl. Math. Lett., 2 (1989), pp. 1–9.MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. C. Butcher,The Numerical Analysis of Ordinary Differential Equations, Wiley, New York, 1992.zbMATHGoogle Scholar
  4. 4.
    M. Calvo, D. Higham, J. Montijano, and L. Rández,Stepsize selection for tolerance proportionality in explicit Runge-Kutta codes, Adv. Comput. Math. 7 (1997), pp. 361–382.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Hall,Equilibrium states of Runge-Kutta schemes, ACM Trans. Math. Software, 11 (1985), pp. 289–301.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    D. J. Higham and A. M. Stuart,Analysis of the dynamics of local error control via a piecewise continuous residual, BIT, 38 (1998), pp. 44–57.zbMATHMathSciNetGoogle Scholar
  7. 7.
    H. Lamba,Dynamical systems and adaptive time-stepping ODE solvers. SCCM Technical Report, Stanford University, 1998.Google Scholar
  8. 8.
    H. Lamba and A. M. Stuart,Convergence proofs for numerical IVP software. SCCM Technical Report, Stanford University, 1998.Google Scholar
  9. 9.
    L. Shampine,Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.zbMATHGoogle Scholar
  10. 10.
    L. Shampine and M. Reichelt,The MATLAB ODE suite, SIAM J. Sci. Comp., 18 (1997), pp. 1–22.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    H. J. Stetter,Considerations concerning a theory for ODE solvers, in Numerical Treatment of Differential Equations, Lecture Notes in Mathematics 631, Springer-Verlag, Berlin, 1976.Google Scholar
  12. 12.
    H. J. Stetter,Tolerance proportionality in ODE codes, in Proceedings Second Conference on Numerical Treatment of Ordinary Differential Equations, Humboldt University, 1980.Google Scholar
  13. 13.
    D. Stoffer and K. Nipp,Invariant curves for variable step size integrators, BIT, 31 (1991), pp. 169–180.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. M. Stuart,Probabilistic and deterministic convergence proofs for software for initial value problems, Numerical Algorithms, 14 (1997), pp. 227–260.zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. M. Stuart and A. R. Humphries,Dynamical Systems and Numerical Analysis, Cambridge University Press, 1996.Google Scholar

Copyright information

© Swets & Zeitlinger 1998

Authors and Affiliations

  • H. Lamba
    • 1
  • A. M. Stuart
    • 1
  1. 1.Scientific Computing and Computational Mathematics Program Division of Mechanics and ComputationStanford UniversityStanfordUSA

Personalised recommendations