Wavelet analysis and covariance structure of some classes of non-stationary processes

  • Charles-Antoine Guérin


Processes with stationary n-increments are known to be characterized by the stationarity of their continuous wavelet coefficients. We extend this result to the case of processes with stationary fractional increments and locally stationary processes. Then we give two applications of these properties. First, we derive the explicit covariance structure of processes with stationary n-increments. Second, for fractional Brownian motion, the stationarity of the fractional increments of order greater than the Hurst exponent is recovered.

Math Subject Classifications

42A38 42A82 46F 46N30 60G12 

Keywords and Phases

wavelet analysis stationary processes locally stationary processes stationary increments fractional increments fractional Brownian motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abry, P., Flandrin, P., Taqqu, M.S., and Veitch, D. (1999). Wavelets for the analysis, estimation and synthesis of scaling data, InSelf-Similar Network Traffic and Performance Evaluation, to appear.Google Scholar
  2. [2]
    Averkamp, R. and Houdré, C. A. note on the discrete wavelet transform of second-order processes,IEEE Trans. Inform. Theory, to appear.Google Scholar
  3. [3]
    Averkamp, R. and Houdré, C. (1998). Some distributional properties of the continuous wavelet transform of random processes,IEEE Trans. Inform. Theory,44(3), 1111–1124.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Brockwell, P.J. and Davis, R.A. (1987).Time Series: Theory and Methods, Springer-Verlag, New York.Google Scholar
  5. [5]
    Cambanis, S. and Houdré, C. (1995). On the continuous wavelet transform of second-order random processes,IEEE Trans. Inform. Theory,41(3), 628–642.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Cheng, B. and Tong, H. (1996).A Theory of Wavelet Representation and Decomposition for a General Stochastic Process, Number 115 in Lectures Notes in Statistics. Springer-Verlag, New York, 115–129.Google Scholar
  7. [7]
    Dijkerman, R. W. and Mazumdar, R.R. (1994). On the correlation structure of the wavelet coefficients of fractional brownian motion,IEEE Trans. Inform. Theory,40(5), 1609–1616.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Dijkerman, R.W. and Mazumdar, R.R. (1994). Wavelet representations of stochastic processes and multiresolution stochastic models,IEEE Trans. Signal Proc.,42(7), 1640–1652.CrossRefGoogle Scholar
  9. [9]
    Doob, J.L. (1953).Stochastic Processes, Wiley Publications in Statistics, Wiley, New York.zbMATHGoogle Scholar
  10. [10]
    Flandrin, P. (1989). On the spectrum of fractional brownian motion,IEEE Trans. Inform. Theory,35(1), 197–199.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Flandrin, P. (1992). Wavelet analysis and synthesis of fractional brownian motion,IEEE Trans. Inform. Theory,38(2), 910–917.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Folland, G.B. (1984).Real Analysis, John Wiley & Sons, New York.zbMATHGoogle Scholar
  13. [13]
    Gel'fand, I.M. (1955). Generalized random processes,Dokl. Akad. Nauk. SSSR,100, 853.zbMATHMathSciNetGoogle Scholar
  14. [14]
    Gel'fand, I.M. and Shilov, G.E. (1964).Generalized Functions. Vol. 1. Academic Press [Harcourt Brace Jovanovich Publishers], New York, [1977]. Properties and operations, Translated from the Russian by Eugene Saletan.Google Scholar
  15. [15]
    Gel'fand, I.M. and Vilenkin, N.Ya. (1964).Generalized Functions. Vol. 4. Academic Press [Harcourt Brace Jovanovich Publishers], New York, [1977]. Applications of harmonic analysis, Translated from the Russian by Amiel Feinstein.Google Scholar
  16. [16]
    Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing,J. Time Ser. Anal.,1(1), 15–29.zbMATHMathSciNetGoogle Scholar
  17. [17]
    Hosking, J.R.M. (1981). Fractional differencing,Biometrika,68(1), 165–176.zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    Houdré, C. (1990). Harmonizability, v-boundedness, (2,p)-boundedness of stochastic processes,Probab. Th. Rel. Fields,87, 167–188.zbMATHCrossRefGoogle Scholar
  19. [19]
    Houdré, C. (1993). Wavelets, probability and statistics: some bridges,Wavelets: Mathematics and Applications, Benedetto, J. and Frazier, M., Eds., CRC Press, Boca Raton, FL, 361–394.Google Scholar
  20. [20]
    Krim, H. and Pesquet, J.C. (1995). Multiresolution analysis of a class of nonstationary processes,IEEE Trans. Inform. Theory,41, 1010–1020.zbMATHCrossRefGoogle Scholar
  21. [21]
    Loève, M. (1978).Probability Theory. II. 4th ed., Springer-Verlag, New York, Graduate Texts in Mathematics, Vol. 46.zbMATHGoogle Scholar
  22. [22]
    Mallat, S., Papanicolaou, G., and Zhang, Z. (1998). Adaptive covariance estimation of locally stationary processes,Ann. Statist.,26(1), 1–47.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications,SIAM Rev.,10, 422–437.zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    Masry, E. (1993). The wavelet transform to stochastic processes with stationary increments and its application to fractional brownian motion,IEEE Trans. Inform. Theory,39(1), 260–264.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Masry, E. (1996). Convergence properties of wavelet series expansions of fractional brownian motion.Appl. Comp. Harm. Anal.,3, 239–253.zbMATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    Michálek, J. (1986). Ergodic properties of locally stationary processes,Kybernetika (Prague),22(4), 320–328.zbMATHMathSciNetGoogle Scholar
  27. [27]
    Michálek, J. (1986). Spectral decomposition of locally stationary random processes,Kybernetika (Prague),22(3), 244–255.zbMATHMathSciNetGoogle Scholar
  28. [28]
    Michálek, J. (1989). Linear transformations of locally stationary processes,Apl. Mat.,34(1), 57–66.zbMATHMathSciNetGoogle Scholar
  29. [29]
    Pesquet-Popescu, B. (1998).Modélisation bidimensionnelle de processus non-stationnaires et application à l'étude du fond sous-marin. Ph.D. thesis, Ecole Normale Supérieure de Cachan, July.Google Scholar
  30. [30]
    Pesquet-Popescu, B. (1999). Wavelet packet analysis of 2d processes with stationary fractional increments,IEEE Trans. Inform. Theory, 1033–1039.Google Scholar
  31. [31]
    Pesquet-Popescu, B. and Larzabal, P. (1997). 2d-self-similar processes with stationary fractional increments. InFractals in Engineering, Tricot Levy Véhel, Lutton, Ed., Springer-Verlag, Berlin.Google Scholar
  32. [32]
    Picinbono, B. (1974). Properties and applications of stochastic processes with stationarynth-order increments,Adv. Appl. Prob.,6, 512–523.zbMATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    Pinsker, M.S. (1955). The theory of curves in hilbert space with stationarynth increments, (Russian),Izv. Akad. Nauk SSSR. Ser. Mat.,19, 319–344.zbMATHMathSciNetGoogle Scholar
  34. [34]
    Pinsker, M.S. and Yaglom, A.M. (1954). Random processes with stationary increments of thenth order,Dokl. Akad. Nauk. SSSR,94, 385–388.zbMATHMathSciNetGoogle Scholar
  35. [35]
    Ramanathan, J. and Zeitouni, O. (1991). On the wavelet transform of fractional brownian motion,IEEE on Information Theory,37(4), 1156–1158.MathSciNetCrossRefGoogle Scholar
  36. [36]
    Rozanov, Yu.A. (1959). Spectral analysis of abstract functions,Theor. Probab. Appl. Google Scholar
  37. [37]
    Schwartz, L. (1950).Théorie des Distributions, Hermann, Paris.Google Scholar
  38. [38]
    Silverman, R.A. (1957).Locally Stationary Random Processes. Div. Electromag. Res., Inst. Math. Sci., New York University. Res. Rep. No. MME-2.Google Scholar
  39. [39]
    Tewfik, A.H. and Kim, M. (1992). Correlation structure of the discrete wavelet coefficients of fractional brownian motion,IEEE Trans. Inform. Theory,38(2), 904–909.zbMATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    Veitch, D. and Abry, P. (1998). A wavelet based joint estimator for the parameters of Ird.,IEEE Trans. Info. Th., special issue “Multiscale Statistical Signal Analysis and its Application”.Google Scholar
  41. [41]
    Winkler, H. (1993). Integral representation for stochastic processes withnth stationary increments,Math. Nachr.,163, 35–44.zbMATHMathSciNetGoogle Scholar
  42. [42]
    Wong, P.W. (1993). Wavelet decomposition of harmonizable random processes,IEEE Trans. Inform. Theory,39(1), 7–18.zbMATHMathSciNetCrossRefGoogle Scholar
  43. [43]
    Yaglom, A.M. (1958). Correlation theory of processes with randomnth increments,Am. Math. Soc. Transl.,8(2), 87–141.zbMATHMathSciNetGoogle Scholar
  44. [44]
    Yaglom, A.M. (1987).Correlation Theory of Stationary and Related Random Functions, Vol. 1, Springer-Verlag, New York.zbMATHGoogle Scholar
  45. [45]
    Yaglom, A.M. and Pinsker, M.S. (1953). Random processes with stationary increments of thenth order,Dokl. Akad. Nauk. SSSR,90, 731–734.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser 2000

Authors and Affiliations

  • Charles-Antoine Guérin
    • 1
    • 2
  1. 1.Department of Mathematics and StatisticsChalmers University of TechnologyGothenburgSweden
  2. 2.Laboratoire d'Optique ElectromagnétiqueFaculté des Sciences de Saint-JérômeMarseille cedex 20

Personalised recommendations