Journal of Fourier Analysis and Applications

, Volume 6, Issue 1, pp 93–103

Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces

  • Akram Aldroubi
  • Karlheinz Gröchenig


Under the appropriate definition of sampling density Dϕ, a function f that belongs to a shift invariant space can be reconstructed in a stable way from its non-uniform samples only if Dϕ≥1. This result is similar to Landau's result for the Paley-Wiener space B1/2. If the shift invariant space consists of polynomial splines, then we show that Dϕ<1 is sufficient for the stable reconstruction of a function f from its samples, a result similar to Beurling's special case B1/2.

Math Subject Classifications

42C15 42A65 

Keywords and Phrases

irregular sampling spline shift invariant spaces frames Wiener amalgam spaces reproducing Kernel Hilbert spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aldroubi, A. (1995). Portraits of frames,Proc. Am. Math. Soc.,123(6), 1661–1668.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Aldroubi, A. and Feichtinger, H. (1998). Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: theL p theory,Proc. Am. Math. Soc.,126(9), 2677–2686.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Aldroubi, A. and Unser, M. (1992). Families of wavelet transforms in connection with Shannon's sampling theory and the Gabor transform, inWavelets: A Tutorial in Theory and Applications, C.K. Chui, Ed., Academic Press, 1992, 509–528.Google Scholar
  4. [4]
    Aldroubi, A. and Unser, M. (1994). Sampling procedure in function spaces and asymptotic equivalence with Shannon's sampling theory,Numer. Funct. Anal. and Optimiz. 15(1), 1–21.MATHMathSciNetGoogle Scholar
  5. [5]
    Berenstein, C.A. and Patrick, E.V. (1990). Exact deconvolution for multiple convolution operators—an overview, plus performance characterizations for imaging sensors, inIEEE, 723–743. IEEE.Google Scholar
  6. [6]
    Beurling, A. (1989). In Carleson, L., Ed.,A. Beurling. Collected Works. Vol. 2, Birkhäuser, Boston, 341–365.Google Scholar
  7. [7]
    Butzer, P.L. (1983). A survey of the Whittaker-Shannon sampling theorem and some of its extension,J. Math. Res. Exposition,3(1), 185–212.MathSciNetGoogle Scholar
  8. [8]
    Chen, W., Itoh, S., and Shiki, J. (1998). Irregular sampling theorems for wavelet subspaces,IEEE Trans. Inform. Theory,44, 1131–1142.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Chui, C.K., Ed. (1992).Wavelets: A Tutorial in Theory and Applications. Academic Press, San Diego, CA.MATHGoogle Scholar
  10. [10]
    Duffin, R.J. and Schaeffer, A.C. (1952). A class of nonharmonic Fourier series,Trans. Am. Math. Soc.,72(2), 341–366.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Feichtinger, H.G. (1990). Generalized amalgams, with applications to Fourier transform,Can. J. Math.,42 (3), 395–409.MATHMathSciNetGoogle Scholar
  12. [12]
    Feichtinger, H.G. (1991). Wiener amalgams over euclidean spaces and some of their applications, in Jarosz, K., Ed.,Proc. Conf. Function spaces,136, ofLect. Notes in Math., Edwardsville, IL, April 1990, 123–137, Marcel-Dekker.Google Scholar
  13. [13]
    Feichtinger, H.G. and Gröchenig, H. (1992). Iterative reconstruction of multivariate band-limited functions from irregular sampling values,SIAM J. Math. Anal.,231, 244–261.CrossRefGoogle Scholar
  14. [14]
    Feichtinger, H.G. and Gröchenig, K. (1993). Theory and practice of irregular sampling, in wavelets: Mathematics and applications, in Benedetto, J.J. and Frazier, M., Eds.,Wavelets: Mathematics and Applications, CRC, Boca Raton, FL. 305–363.Google Scholar
  15. [15]
    Fournier, J.J. and Stewart, J. (1985). Amalgams ofl p andl p.Bull. Am. Math. Soc.,13(1), 1–21.MATHMathSciNetGoogle Scholar
  16. [16]
    Gröchenig, K. (1992). Reconstruction algorithms in irregular sampling,Math. Comp.,59, 181–194.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Gröchenig, K. and Razafinjatovo, H. (1996). On Landau's necessary density conditions for sampling and interpolation of band-limited function,J. London Math. Soc.,54, 557–565.MATHMathSciNetGoogle Scholar
  18. [18]
    Janssen, A. (1993). The Zak transform and sampling theorems for wavelet subspaces,IEEE Trans. Signal Process.,6, 39–49.MATHMathSciNetGoogle Scholar
  19. [19]
    Jerri, A. (1977). The Shannon sampling theorem—its various extensions and applications: A tutorial review,Proc. IEEE,65, 1565–1596.MATHCrossRefGoogle Scholar
  20. [20]
    Jia, R.Q. and Micchelli, C.A. (1991). Using the refinement equations for the construction of pre-wavelets. ii. powers of two, inCurves and Surfaces, Academic Press, Boston, MA, 209–246.Google Scholar
  21. [21]
    Landau, H. (1967). Necessary density conditions for sampling and interpolation of certain entire functions,Acta Math.,117, 37–52.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    Liu, Y. (1996). Irregular sampling for spline wavelet subspaces,IEEE Trans. Inform. Theory,42, 623–627.MATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Liu, Y.M. and Walter, G.G. (1995). Irregular sampling in wavelet subspaces,J. Fourier Anal. Appl.,2(2), 181–189.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    Mallat, S. (1989). Multiresolution approximations and wavelet orthonormal bases of L2ℝ,Trans. Am. Math. Soc.,315(1), 69–97.MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Mallat, S. (1992). Personal communication, conf. oberwolfach, wavelets and applications.Google Scholar
  26. [26]
    Meyer, Y. (1990).Ondelettes et opérateurs, Hermann, Paris, France.MATHGoogle Scholar
  27. [27]
    Schumaker, L. (1980).Spline Functions: Basic Theory. Wiley-Interscience, Boston.Google Scholar
  28. [28]
    Unser, M. and Aldroubi, A. (1994). A general sampling theory for non-ideal acquisition devices,IEEE Trans. on Signal Processing,42(11), 2915–2925.CrossRefGoogle Scholar
  29. [29]
    Walnut, D. (1996). Nonperiodic sampling of bandlimited functions on union of rectangular lattices,J. Fourier Anal. Appl.,2(5), 436–451.MathSciNetGoogle Scholar
  30. [30]
    Walter, G.G. (1992). A sampling theorem for wavelet subspaces,IEEE Trans. Inform. Theory, part 2,116(2) 881–884.CrossRefGoogle Scholar
  31. [31]
    Xia, X.G. and Zhang, Z.Z. (1993). On sampling theorem, wavelets, and wavelet transforms,IEEE Trans. Signal Process.,41(12), 3524–3535.MATHCrossRefGoogle Scholar
  32. [32]
    Yao, K. (1967). Applications of reproducing kernel Hilbert spaces-bandlimited signal models,Information and Control,11, 429–444.MATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser 2000

Authors and Affiliations

  • Akram Aldroubi
    • 1
  • Karlheinz Gröchenig
    • 1
  1. 1.Department of MathematicsVanderbilt UniversityNashville

Personalised recommendations