Functional Analysis and Its Applications

, Volume 30, Issue 4, pp 275–277 | Cite as

Integrable systems generated by a constant solution of the Yang-Baxter equation

  • I. Z. Golubchik
  • V. V. Sokolov
Brief Communications


Recursion Operator Hydrodynamic Type Coadjoint Action Nonassociative Algebra Compatible Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Drinfeld and V. V. Sokolov, “Lie algebras and equations of KdV type,” in: Sovremennye Problemy Matematiki. Itogi Nauki i Tekhniki, Vol. 24, VINITI, Moscow, 1984, pp. 81–180.Google Scholar
  2. 2.
    V. G. Drinfeld, Dokl. Akad. Nauk SSSR,273, No. 3, 531–534 (1983).MATHMathSciNetGoogle Scholar
  3. 3.
    M. A. Semenov-Tian-Shansky, Funkts. Anal. Prilozhen.,17, No. 4, 17–33 (1983).Google Scholar
  4. 4.
    A. Medina, C. R. Acad. Sci. Paris, Ser. A.,286, 173–177 (1978).MATHMathSciNetGoogle Scholar
  5. 5.
    S. I. Svinolupov, Phys. Lett. A.,135, 32–36 (1987).MathSciNetCrossRefGoogle Scholar
  6. 6.
    I. Z. Golubchik, V. V. Sokolov, and S. I. Svinolupov, A New Class of Nonassociative Algebras and a Generalized Factorization Method, Preprint ESI,53, Wien, Austria, 1993.Google Scholar
  7. 7.
    A. G. Reyman and M. A. Semenov-Tian-Shansky, Funkts. Anal. Prilozhen.,14, No. 2, 77–78 (1980).MATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • I. Z. Golubchik
  • V. V. Sokolov

There are no affiliations available

Personalised recommendations