Advertisement

Chromosoma

, Volume 105, Issue 2, pp 104–110 | Cite as

The heat shock genes in theDrosophila montium subgroup: Chromosomal localization and evolutionary implications

  • Elena Drosopoulou
  • Irene Konstantopoulou
  • Zacharias G. Scouras
Article

Abstract

Thehsp70, hsp83, hsrω, and thesmall heat shock protein genes were mapped on the polytene chromosomes of six species, representative of the geographical distribution of theDrosophila montium subgroup of themelanogaster species group. In addition, based on hybridization conditions, the putative locus of thehsp68 gene is given. In contrast to the situation in themelanogaster subgroup species, thehsp70 locus is single in themontium species. Thehsp83, hsrω and thesmall hsp loci are also single in themontium genomes studied here, a common feature of allDrosophila species. Among thehsp genes studied, thesmall hsp genes and thehsrω-homologous sequences exhibit a higher degree of divergence between themelanogaster and themontium subgroups. Our results support the idea that themontium subgroup species has a genome organization closer to that of the common ancestor compared with themelanogaster subgroup species.

Keywords

Heat Shock Polytene Chromosome Heat Shock Gene Heat Shock Protein Gene Balbiani Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner M (1970) Patterns of puffing activity in the salivary gland chromosomes ofDrosophila. V. Responses to environmental treatments. Chromosoma 31:356–376PubMedCrossRefGoogle Scholar
  2. Ashburner M (1989)Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  3. Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219:11–23PubMedCrossRefGoogle Scholar
  4. Drosopoulou E, Scouras ZG (1995) The β-tubulin gene family evolution in theDrosophila montium subgroup of themelanogaster species group. J Mol Evol 41:293–298PubMedCrossRefGoogle Scholar
  5. Garbe J, Pardue ML (1986) Heat shock locus 93D ofDrosophila melanogaster: a spliced RNA most strongly conserved in the intron sequence. Proc Natl Acad Sci USA 83:1812–1816PubMedCrossRefGoogle Scholar
  6. Hackett RW, Lis JT (1983) Localization of thehsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus ofD. melanogaster. Nucleic Acids Res 11:7011–7030PubMedGoogle Scholar
  7. Hogan NC, Slot F, Traverse KL, Garbe JC, Bendena WG, Pardue ML (1995) Stability of tandem repeats in theDrosophila melanogaster Hsr-omega nuclear RNA. Genetics 139:1611–1621PubMedGoogle Scholar
  8. Holmgren R, Corces V, Morimoto R, Blackman R, Meselson M (1981) Sequence homologies in the 5′ regions of fourDrosophila heat shock genes. Proc Natl Acad Sci USA 78:3775–3778PubMedCrossRefGoogle Scholar
  9. Ingolia TD, Craig EA (1982) FourDrosophila heat shock proteins are related to each other and to mammalian a-crystallin. Proc Natl Acad Sci USA 79:2360–2364PubMedCrossRefGoogle Scholar
  10. Ish-Horowicz D, Pinchin SM (1980) Genomic organization of the 87A7 and 87C1 heat-induced loci ofDrosophila melanogaster. J Mol Biol 142:231–245PubMedCrossRefGoogle Scholar
  11. Kastritsis CD, Scouras ZG, Ashburner M (1986) Duplications in the polytene chromosomes ofDrosophila auraria. Chromosoma 93:381–385CrossRefGoogle Scholar
  12. Konstantopoulou I, Ouzounis C, Drosopoulou E, Yiangou M, Sideras P, Sander C, Scouras ZG (1995) ADrosophila hsp70 gene contains long antiparallel coupled open reading frames (LAC ORFs) conserved in homologous loci. J Mol Evol 41:414–420PubMedCrossRefGoogle Scholar
  13. Lakhotia SC, Singh AK (1982) Conservation of the 93D puff ofDrosophila melanogaster in different species ofDrosophila. Chromosoma 86:265–278CrossRefGoogle Scholar
  14. Leigh Brown AJ, Ish-Horowicz D (1981) Evolution of the 87A and 87C heat-shock loci inDrosophila. Nature 290:677–682PubMedCrossRefGoogle Scholar
  15. Lemeunier F, David JR, Tsacas I, Ashburner M (1986) Themelanogaster species group. In: Ashburner M, Carson HL, Thompson J (eds) The genetics and biology ofDrosophila, vol 3e. Academic Press, London Orlando, pp 147–256Google Scholar
  16. Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22:631–677PubMedCrossRefGoogle Scholar
  17. Mavragani-Tsipidou P, Scouras ZG (1991) Developmental changes in fat body and midgut chromosomes ofDrosophila auraria. Chromosoma 100:443–452PubMedCrossRefGoogle Scholar
  18. Mavragani-Tsipidou P, Kyrpides N, Scouras ZG (1990) Evolutionary implications of duplications and Balbiani rings inDrosophila: a study ofDrosophila serrata. Genome 33:478–485PubMedGoogle Scholar
  19. Mavragani-Tsipidou P, Scouras ZG, Natsiou-Voziki A (1992) The Balbiani ring and the polytene chromosomes ofDrosophila bicornuta. Genome 35:64–67PubMedGoogle Scholar
  20. Mavragani-Tsipidou P, Zambetaki A, Kleanthous K, Pangou E, Scouras ZG (1994) Developmental and evolutionary studies on the Afrotropical species ofDrosophila montium subgroup.D. diplacantha andD. seguyi. Genome 37:935–944PubMedGoogle Scholar
  21. McGarry TJ, Lindquist S (1985) The preferential translation ofDrosophila hsp70 mRNA requires sequences in the untranslated leader. Cell 42:903–911PubMedCrossRefGoogle Scholar
  22. Molto MD, Pascual L, Martinez-Sebastian MJ, de Frutos R (1992) Genetic analysis of heat shock response in threeDrosophila species of theobscura group. Genome 35:870–880PubMedGoogle Scholar
  23. Nikolaidis N, Scouras ZG (1996) TheDrosophila montium subgroup species. Phylogenetic relationships based on mitochondrial DNA analysis. Genome (in press)Google Scholar
  24. O'Connor D, Lis JT (1981) Two closely linked transcription units within the 63B heat shock puff ofDrosophila melanogaster display strikingly different regulation. Nucleic Acids Res 9:5075–5092PubMedGoogle Scholar
  25. Pardue ML (1986) In situ hybridization to DNA of chromosomes and nuclei. In: Roberts DB (ed)Drosophila a practical approach. IRL Press, Oxford Washington DC, pp 111–137Google Scholar
  26. Parkash R, Rajput PS (1983) Photomap of the salivary gland chromosomes ofD. jambulina (Parshad and Paika). Dros Inf Serv 59:96–98Google Scholar
  27. Parsell DA, Lindquist S (1993) The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496PubMedCrossRefGoogle Scholar
  28. Pauli D, Arrigo AP, Tissières A (1992) Heat shock response inDrosophila. Experientia 48:623–628PubMedCrossRefGoogle Scholar
  29. Peters FPAMN, Lubsen NH, Sondermeijer PJA (1980) Rapid sequence divergence in a heat shock locus ofDrosophila. Chromosoma 81:271–280PubMedCrossRefGoogle Scholar
  30. Pissios P, Scouras ZG (1993) Mitochondrial DNA evolution in themontium species subgroup ofDrosophila. Mol Biol Evol 10: 375–382PubMedGoogle Scholar
  31. Ritossa FM (1962) A new puffing pattern induced by temperature shock and DNP inDrosophila. Experientia 18:571–573CrossRefGoogle Scholar
  32. Roy S, Lakhotia SC (1977) Photomap of salivary chromosomes ofDrosophila kikkawai. Dros Inf Serv 52:118–119Google Scholar
  33. Rutherford SL, Zuker CS (1994) Protein folding and regulation of signalling pathways. Cell 79:1129–1132PubMedCrossRefGoogle Scholar
  34. Schedl P, Artavanis-Tsakonas S, Steward R, Gehring WJ, Mirault ME, Goldschmidt-Clermont M, Moran L, Tissières A (1978) Two hybrid plasmids withD. melanogaster DNA sequences complementary to mRNA coding for the major heat shock protein. Cell 14:921–929PubMedCrossRefGoogle Scholar
  35. Scouras ZG, Kastritsis CD (1984) Balbiani rings and puffs of the polytene chromosomes ofDrosophila auraria. Chromosoma 89:96–106CrossRefGoogle Scholar
  36. Scouras ZG, Karamanlidou GA, Kastritsis CD (1986) The influence of heat shock on the puffing pattern ofDrosophila auraria polytene chromosomes. Genetica 69:213–218CrossRefGoogle Scholar
  37. Scouras ZG, Milioni D, Yiangou M, Duchene M, Domdey H (1994) The β-tubulin genes ofDrosophila auraria are arranged in a cluster. Curr Genet 25:84–87PubMedCrossRefGoogle Scholar
  38. Southgate R, Ayme A, Voellmy R (1983) Nucleotide sequence analysis of theDrosophila small heat shock gene cluster at locus 67B. J Mol Biol 165:35–57PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Elena Drosopoulou
    • 1
  • Irene Konstantopoulou
    • 1
  • Zacharias G. Scouras
    • 1
  1. 1.Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of ScienceAristotle University of Thessaloniki (AUTH)ThessalonikiGreece

Personalised recommendations