Journal of Plant Research

, Volume 110, Issue 2, pp 209–217 | Cite as

Genetic variation and population structure in Korean endemic species: IV.Hemerocallis hakuunensis (Liliaceae)

  • Soon Suk Kang
  • Myong Gi Chung
Article

Abstract

Hemerocallis hakuunensis, a Korean endemic species, maintains considerably higher levels of allozyme variation within populations (meanHe=0.253) and substantially lower levels of allozyme divergence among populations (meanGST=0.077) than average values reported for other insect-pollinated, outcrossing herbs. Indirect estimates of the number of migrants per generation (Nm=3.00, calculated fromGST;Nm=3.57, calculated from the frequency of nine alleles unique to single populations) indicate that gene flow has been extensive inH. hakuunensis. This is somewhat surprising when we consider the fact that no specialized seed dispersal mechanism is known, flowers are visited by bees, and the present-day populations of the species are discontinous and isolated. Results of a spatial autocorrelation analysis based on mean allele frequencies of 19 populations reveal that only 13% (95/720 cases) of Moran'sI values for the ten interpopulational distance classes are significantly different from the expected values and no distinct trend with respect to the distance classes is detected. Although it is unclear how the populations are genetically homogenous, it is highly probable thatH. hakuunensis might have a history of relatively large, continuous populations that had more chance for gene movement among adjacent populations after the last Ice Age. In addition, occasional hybridization withH. thunbergii in areas of sympatry in the central and southwestern Korean Peninsula may be one factor contributing the present-day high allozyme variation observed inH. hakuunensis.

Key words

Gene flow Genetic diversity Hemerocallis hakuunensis Moran'sI Population genetic structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, N.H. andSlatkin, M. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity56: 409–415.PubMedGoogle Scholar
  2. Broyles, S.B. andWyatt, R. 1993. Allozyme diversity and genetic structure in southern Appalachian populations of poke milkweed,Asclepias exaltata. Syst. Bot.18: 18–30.CrossRefGoogle Scholar
  3. Cheliak, W.M. andPitel, J.A. 1994. Techniques for starch gel electrophoresis of enzymes from forest species.Information Report PI-42, Petawawa National Forestry Institute, Agriculture Canada, Canadian Forestry Service, Pp. 1–49. Chalk River, Ontario.Google Scholar
  4. Chung, M.G. 1994. Genetic variation and population structure in Korean endemic species: III.Hosta minor (Liliaceae). J. Plant Res.107: 377–383.CrossRefGoogle Scholar
  5. Chung, M.G. 1995. Genetic diversity in two island endemics:Hosta venusta andH. tsushimensis (Liliaceae). J. Jap. Bot.70: 322–327.Google Scholar
  6. Chung, M.G. 1996. Spatial genetic structure among Korean populations ofHosta minor andH. capitata (Liliaceae). Bot. Bull. Acad. Sin.37: 25–30.Google Scholar
  7. Chung, M.G., Hamrick, J.L., Jones, S.B., andDerda, G.S. 1991. Isozyme variation within and among populations ofHosta (Liliaceae) in Korea. Syst. Bot.16: 667–684.CrossRefGoogle Scholar
  8. Chung, M.G. andKang S.S. 1994a. Morphometric analysis of the genusHemerocallis L (Liliaceae) in Korea. J. Plant Res.107: 165–175.CrossRefGoogle Scholar
  9. Chung, M.G. andKang, S.S. 1994b. Genetic variation and population structure in populations ofEurya japonica (Theaceae) in Korea. Amer. J. Bot.81: 1077–1082.CrossRefGoogle Scholar
  10. Chung, M.G. andKang, S.S. 1995. Spatial genetic structure among Korean populations ofEurya japonica andE. emarginata (Theaceae). Ann. Bot. Fennici.32: 233–237.Google Scholar
  11. Clayton, J.W. andTretiak, D.N. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can.29: 1169–1172.Google Scholar
  12. Cliff, A.D. andOrd, J.K. 1981. Spatial Process-Models and Applications. Pion, London.Google Scholar
  13. Cole, C.T. andBiesboer, D.D. 1992. Monomorphism, reduced gene flow, and cleistogamy in rare and common species ofLespedeza (Fabaceae). Amer. J. Bot.79: 567–575.CrossRefGoogle Scholar
  14. Cosner, M.E. andCrawford, D.J. 1994. Comparisons of isozyme diversity in three rare species ofCoreopsis (Asteraceae). Syst. Bot.19: 350–358.CrossRefGoogle Scholar
  15. Dewey, S.E. andHeywood, J.S. 1988. Spatial autocorrelation in a population ofPsychotria nervosa. I. Distribution of genotypes. Evolution47: 834–838.CrossRefGoogle Scholar
  16. Epperson, B.K. andClegg, M.T. 1986. Spatial autocorrelation of flower color polymorphisms within substructured populations of morning glory (Ipomea purpurea). Am. Nat.128: 840–858.CrossRefGoogle Scholar
  17. Fowler, D.P. andMorris, R.W. 1977. Genetic diversity in red pine: evidence for low genetic heterozygosity. Can. J. For. Res.7: 343–347.Google Scholar
  18. Godt, M.J.W. andHamrick, J.L. 1993. Genetic diversity and population structure inTradescantia hirsuticaulis (Commelinaceae). Amer. J. Bot.80: 959–966.CrossRefGoogle Scholar
  19. Godt, M.J.W. andHamrick, J.L. 1996. Genetic structure of two endangered pitcher plants,Sarracenia jonesii andS. oreophila (Sarraceniaceae). Amer. J. Bot.83: 1016–1023.CrossRefGoogle Scholar
  20. Godt, M.J.W., Hamrick, J.L. andBratton, S. 1995. Genetic diversity in a threatened wetland species,Helonias bullata (Liliaceae). Conserv. Biol.9: 596–604.CrossRefGoogle Scholar
  21. Hamrick, J.L. andGodt, M.J.W. 1989. Allozyme diversity in plant species.In A.D.H. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir, eds., Plant Population Genetics, Breeding and Genetic Resources. Sinauer, Sunderland, pp. 43–63.Google Scholar
  22. Hamrick, J.L., Godt, M.J.W., Murawski, D.A. andLoveless, M.D. 1991. Correlations between species traits and allozyme diversity: Implications for conservation biology.In D.A. Falk and K.E. Holsinger, eds., Genetics and Conservation of Rare Plants. Oxford Univ. Press, New York, pp. 76–86.Google Scholar
  23. Hamrick, J.L., Godt, M.J.W. andSherman-Broyles, S.L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests6: 95–124.CrossRefGoogle Scholar
  24. Hartl, D.L. andClark, A.G. 1989. Principles of Population Genetics. Sinauer, Sunderland, MA.Google Scholar
  25. Haufler, C.H. 1985. Enzyme variability and modes of evolution inBommeria (Pteridaceae). Syst. Bot.10: 92–104.CrossRefGoogle Scholar
  26. Hiebert, R.D. andHamrick, J.L. 1983. Patterns and levels of genetic variation in Great Basin Bristlecone pine,Pinus longaeva. Evolution37: 302–310.CrossRefGoogle Scholar
  27. Heywood, J.S. 1991. Spatial analysis of genetic variation in plant populations. Annu. Rev. Ecol. Syst.22: 335–355.CrossRefGoogle Scholar
  28. Holsinger, K.E. andGottlieb, L.D. 1991. Conservation of rare and endangered plants: Principles and prospects.In D.A. Falk and K.E. Holsinger, eds., Genetics and Conservation of Rare Plants. Oxford Univ. Press, New York, pp. 195–208.Google Scholar
  29. Hotta, M., Ito, M. andOkada, I. 1984. Anthesis of the genusHemerocallis and its variation. Special mentions to nocturnalH. thunbergii of Tsushima & Hirado Islands, Western Japan. Acta Phytotax. Geobot.35: 84–93.Google Scholar
  30. Hotta, M., Ito, M. andOkada, I. 1985. Differentiation and species relationships of island populations ofHemerocallis around Kyushu, Japan.In H. Hara, ed. Origin and Evolution of Diversity in Plants and Plant Communities. Acad. Sci. Book Inc., Tokyo. pp. 18–31.Google Scholar
  31. Jensen, R.T. 1986. Geographic spatial autocorrelation inQuercus ellipsoidalis. Bull. Torrey Bot. Club.113: 431–439.CrossRefGoogle Scholar
  32. Kang, S.S. andChung M.G. 1994.Hemerocallis hakuunensis (Liliaceae) in Korea. Sida16: 23–31.Google Scholar
  33. Karron, J.D., Linhart, Y.B., Chaulk, C.A. andRobertson, C.A. 1988. The genetic structure of populations of geographically restricted and widespread species ofAstragalus (Fabaceae). Amer. J. Bot.75: 1114–1119.CrossRefGoogle Scholar
  34. Karron, J.D. 1991. Patterns of genetic variation and breeding systems in rare plant species.In D.A. Falk and K.E. Holsinger, eds., Genetics and Conservation of Rare Plants. Oxford. Univ. Press, New York, pp. 87–98.Google Scholar
  35. Kawano, S. 1961. On the natural hybrid population ofHemerocallis. Can. J. Bot.39: 667–681.CrossRefGoogle Scholar
  36. Lewis, P.O. 1991. Allozyme variation in the rare Gulf Coast endemicPolygonella macrophylla (Polygonaceae). Plant Species Biol.6: 1–10.CrossRefGoogle Scholar
  37. Lewis, P.O. andCrawford, D.J. 1995. Pleistocene refugium endemics exhibit greater allozymic diversity than widespread congeners in the genusPolygonella (Polygonaceae). Amer. J. Bot.82: 141–149.CrossRefGoogle Scholar
  38. Li, C.C. andHorvitz, D.G. 1953. Some methods of estimating the inbreeding coefficient. Amer. J. Human Genet.5: 107–117.Google Scholar
  39. Linhart, Y.B. andPremoli, A.C. 1993. Genetic variation inAletes acaulis and its relative, the narrow endemicA. humilis (Apiaceae). Amer. J. Bot.80: 598–605.CrossRefGoogle Scholar
  40. Mitton, J.B., Linhart, Y.B., Sturgeon, K.B. andHamrick, J.L. 1979. Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. J. Hered.70: 86–89.Google Scholar
  41. Nakao, S. and Yamashita, K. 1956. Variation in some plant populations.In T. Komai and K. Sakai, eds., Syundan Idengaku (Population Genetics) Tokyo (in Japanese), pp. 248–254.Google Scholar
  42. Nei, M. 1972. Genetic distance between populations. Am. Nat.106: 283–292.CrossRefGoogle Scholar
  43. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA70: 3321–3323.PubMedCrossRefGoogle Scholar
  44. Nei, M. 1977.F-statistics and analysis of gene diversity in subdivided populations. Ann. Human Genet.41: 225–233.Google Scholar
  45. Noguchi, J. 1986. Geographical and ecological differentiation in theHemerocallis dumortieri complex with species reference to its karyology. J. Sci. Hiroshima Univ. Ser B. Div. 2, Bot.20: 29–193.Google Scholar
  46. Olmstead, R.G. 1990. Biological and historical factors influencing genetic diversity in theScutellaria angustifolia (Liliaceae). Evolution44: 54–70.CrossRefGoogle Scholar
  47. Purdy, B.G. andBayer, R.J. 1995. Genetic diversity in the tetraploid sand dune endemicDeschampsia mackenzieana and its widespread diploid progenitorD. cespitose (Poaceae). Amer. J. Bot.82: 121–130.CrossRefGoogle Scholar
  48. Purdy, B.G., Bayer, R.J. andMacDonald. 1994. Genetic variation, breeding system, evolution and conservation of the narrow sand dune endemicStellaria arenicola and the widespreadS. longipes (Caryophyllaceae). Amer. J. Bot.81: 904–911.CrossRefGoogle Scholar
  49. Rohlf, F.J. 1988. Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, Setauket, NY.Google Scholar
  50. Sakai, A.K. andOden, N.L. 1983. Spatial pattern of sex expression in silver maple (Acer saccharium L.): Morista's index and spatial autocorrelation. Am. Nat.122: 489–508.CrossRefGoogle Scholar
  51. Sherman-Broyles, S.L., Gibson, J.P., Hamrick, J.L., Bucher, M.A. andGibson, M.J. 1992. Comparisons of allozyme diversity among rare and widespreadRhus species. Syst. Bot.17: 551–559.CrossRefGoogle Scholar
  52. Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution39: 53–65.CrossRefGoogle Scholar
  53. Sokal, R.R., Crovello, T.J. andUnnasch, R. 1986. Geographic variation of vegetative characters ofPopulus dettoides. Syst. Bot.11: 419–432.CrossRefGoogle Scholar
  54. Sokal, R.R. andOden, N.L. 1978a. Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linn. Soc.10: 199–249.Google Scholar
  55. Sokal, R.R. andOden, N.L. 1978b. Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc.10: 229–249.Google Scholar
  56. Soltis, D.E. 1982. Allozyme variability inSullivantia (Saxifragacea). Syst. Bot.7: 26–34.CrossRefGoogle Scholar
  57. Soltis, D.E., Haufler, C.H., Darrow, D.C. andGastony, G.J. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, and staining schedules. Amer. Fern J.73: 9–27.CrossRefGoogle Scholar
  58. Soltis, P.S. andSoltis, D.E. 1991. Genetic variation in endemic and widespread plant species: Examples from Saxifragaceae andPolystichum (Dryopteridaceae). Aliso13: 215–223.Google Scholar
  59. Soltis, P.S., Soltis, D.E., Tucker, T.L. andLang, F.A. 1991. Allozyme variability is absent in the narrow endemicBensoniella oregona (Saxifragaceae). Conser. Biol.6: 131–134.CrossRefGoogle Scholar
  60. Sytsma, K.J. andSchaal, B.A. 1985. Genetic variation, differentiation, and evolution in a species complex of tropical shrubs based on isozymic data. Evolution39: 582–593.CrossRefGoogle Scholar
  61. Weeden, N.F. andWendel, J.F. 1989. Genetics of plant isozymes.In D.E. Soltis and P.S. Soltis, eds. Isozymes in Plant Biology. Dioscorides Press, Portland, OR, pp. 46–72.Google Scholar
  62. Workman, P.L. andNiswander, J.D. 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Amer. J. Human Genet.22: 24–49.Google Scholar
  63. Wright, S. 1951. The genetic structure of populations. Ann. Eugen.15: 313–354.Google Scholar
  64. Wright, S. 1965. The interpretation of population structure byF-statistics with special regard to systems of mating. Evolution19: 395–420.CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan 1997

Authors and Affiliations

  • Soon Suk Kang
    • 1
  • Myong Gi Chung
    • 1
  1. 1.Department of BiologyGyeongsang National UniversityChinjuThe Republic of Korea

Personalised recommendations