Journal of Russian Laser Research

, Volume 20, Issue 3, pp 279–295 | Cite as

Three-dimensional optical memory in ferroelectric media

  • A. A. Mokhnatyuk

Abstract

The physical principles underlying the development of three-dimensional nonvolatile optical memory in ferroelectric media are considered. Optical memory is realized in a transparent optical medium whose active components are ferroelectric microparticles. The optical medium is exposed to nondestructive laser radiation, which allows for bit-by-bit writing and reading of information. Writing of information is made inside the the laser caustic by changing the orientation of polarization of ferroelectric particles to the direction of the external electric field under the influence of the laser radiation. Written data can be read by detecting the laser-radiation second harmonic generated in the laser caustic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Patton,Electronics, No. 8, 3 (1994).Google Scholar
  2. 2.
    R. I. Personov, “Laser fluorescence analysis of organic molecules in solid solutions,” in: V. S. Letokhov (ed.),Laser Analytical Spectroscopy [in Russian], Nauka, Moscow (1986), p. 209.Google Scholar
  3. 3.
    S. H. Altner, S. Bernet, A. Renn, et al.,Opt. Commun.,120, 103 (1995).CrossRefADSGoogle Scholar
  4. 4.
    N. W. Tyer and R. S. Becker,J. Am. Chem. Soc.,22, 1289 (1971).Google Scholar
  5. 5.
    D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, et al.,Kvantovaya Élektron.,23, 871 (1996).Google Scholar
  6. 6.
    J. Malkin, A. Zelichenok, V. Krongauz, et al.,J. Am. Chem. Soc.,116, 1101 (1994).CrossRefGoogle Scholar
  7. 7.
    M. P. Petrov, S. I. Stepanov, and A. V. Khomenko,Photorefractive Crystals in Coherent Optical Systems [in Russian], Nauka, St. Petersburg (1992).Google Scholar
  8. 8.
    A. Hadni and R. Thomas,Opt. Commun.,10, No. 4 (1974). See also: A. Hadni,Ferroelectrics,140, 25 (1993).Google Scholar
  9. 9.
    G. D. Bacher, M. P. Chiao, G. L. Dunning, et al.,Opt. Lett.,21, 18 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    L. D. Landau and E. M. Lifshits,Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1982).MATHGoogle Scholar
  11. 11.
    V. M. Fridkin,Ferroelectrics-Semiconductors [in Russian], Nauka, Moscow (1976).Google Scholar
  12. 12.
    I. R. Shen,Principles of Nonlinear Optics [Russian translation], Nauka, Moscow (1989).MATHGoogle Scholar
  13. 13.
    J. Y. Chang, M. H. Garrett, P. Tayebati, et al.,J. Opt. Soc. Am. B,12, 248 (1995).ADSGoogle Scholar
  14. 14.
    A. A. Grekov, A. I. Rodin, and V. M. Fridkin,Fiz. Tverd. Tela,12, 3643 (1970).Google Scholar
  15. 15.
    L. M. Belyaev, I. I. Groshik, V. A. Lyakhovitskaya, et al.,Pis'ma Zh. Éksp. Teor. Fiz.,6, 481 (1967).Google Scholar
  16. 16.
    S. A. Akhmanov and N. I. Koroteev,Methods of Nonlinear Optics in Light-Scattering Spectroscopy [in Russian], Nauka, Moscow (1981).Google Scholar
  17. 17.
    A. A. Mokhnatyuk,RF Patent No. 2121174,Byull. Izobret., No. 30 (1998).Google Scholar
  18. 18.
    A. A. Mokhnatyuk,Application for an RF Patent No. 98119328 (1998, to be published).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. A. Mokhnatyuk
    • 1
  1. 1.Institute of High-Performance Computing SystemsRussian Academy of SciencesMoscowRussia

Personalised recommendations