Journal of Statistical Physics

, Volume 88, Issue 1–2, pp 471–486

Effect of local field fluctuations on orientational ordering in random-site dipole systems

  • B. E. Vugmeister
  • H. Rabitz
Articles

Abstract

Some peculiarities of dipole ordering in systems with uniaxial or cubic anisotropy with an arbitrary degree of dilution are analyzed in terms of random local field theory. The approach takes into account the effect of thermal and spatial fluctuations of the local fields acting on each particle from its neighbors with an accuracy corresponding to that of the Bethe-Paierls pair clusters approach. We show that ferromagnetic (ferroelectric) structure for uniaxial Ising dipoles distributed on a simple cubic lattice is intrinsically unstable against the fluctuations of the local fields for any concentration of the dipoles. This result is quite different from the prediction of the mean-field theory which implies the possibility of ferromagnetic ordering as a metastable state in field-cooled experiments. The local field fluctuations do not exclude, however, antiferromagnetic ordering above a certain critical concentration. Ferromagnetic ordering is possible for other types of lattice geometries and for an amorphous-like dipole distribution above a certain critical concentration. A simple physical explanation of such behavior is given based on the specific angular dependence of the dipole-dipole interaction that results in a relatively high value of the local field second moment for simple cubic lattice.

Key words

Oreintational ordering dipole-dipole interactions soft dipole spheres simple cubic lattice local field long-range order fluctuations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Rosensweig,Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985)Google Scholar
  2. 2.
    W. Luo, S. R. Nagel, T. F. Rosenbaum, and R. E. Rosensweig,Phys. Rev. Lett. 67: 2721 (1991).CrossRefADSGoogle Scholar
  3. 3.
    J. Popplewel, P. Davis, A. Bradbury, and R. Chantrell,IEEE Trans. Magn. 22: 1128 (1993).CrossRefGoogle Scholar
  4. 4.
    D. H. Reich, B. Ellman, J. Yang, T. F. Rosenbaum, G. Aeppli, and D. P. Belanger,Phys. Rev. B 42:4631 (1990).CrossRefADSGoogle Scholar
  5. 5.
    M. Goldman,Phys. Rep. 32:1 (1971).CrossRefADSGoogle Scholar
  6. 6.
    M. E. Lines and A. M. Glass,Principles and Applications of Ferroelectrics (Clarendon Press, Oxford, 1977).Google Scholar
  7. 7.
    U. T. Hohcli, K. Knorr, and A. Loidl,Adv. Phys.,39:405 (1990).CrossRefADSGoogle Scholar
  8. 8.
    B. E. Vugmeister and M. D. Glinchuck,Rev. Mod. Phys. 62:993 (1990).CrossRefADSGoogle Scholar
  9. 9.
    D. Wei and G. N. Patey,Phys. Rev. Lett. 68:2043 (1992).CrossRefADSGoogle Scholar
  10. 10.
    M. Luttinger and L. Tisza,Phys. Rev. 70:954 (1946);72:257 (1947).CrossRefADSGoogle Scholar
  11. 11.
    M. H. Cohen and F. Keffer,Phys. Rev. 99:1128 (1955).MATHCrossRefADSGoogle Scholar
  12. 12.
    J. Villain,Phys. Chem. Solids 11:303 (1959).CrossRefGoogle Scholar
  13. 13.
    A. Aharony,Solid State Commun. 28:667 (1978).CrossRefGoogle Scholar
  14. 14.
    B. E. Vugmeister,Sov. Phys. Sol. State 26:1483 (1984); B. E. Vugmeister and V. A. Stephanovich,Sov. Phys. JETP 70:1053 (1990).Google Scholar
  15. 15.
    G. Ayton, M. J. P. Gingras, and G. N. Patey,Phys. Rev. Lett. 75:2360 (1995).CrossRefADSGoogle Scholar
  16. 16.
    H. Zhang and M. Widom,Phys. Rev. B 51:8951 (1995).CrossRefADSGoogle Scholar
  17. 17.
    M. W. Klein, C. Held, E. Zuroff,Phys. Rev. B 13:3576 (1976).CrossRefADSGoogle Scholar
  18. 18.
    B. E. Vugmeister and V. A. Stephanovich,Solid State Commun. 67:323 (1987).CrossRefGoogle Scholar
  19. 19.
    F. Zernike,Physica 7:565 (1940).CrossRefADSGoogle Scholar
  20. 20.
    T. Kaneyoshi, I. Tamura, and R. Honmura,Phys. Rev. B 29:2769, (1984).CrossRefADSGoogle Scholar
  21. 21.
    H. B. Calen,Phys. Lett. 4:161 (1963).MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    E. Stenli,Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971).Google Scholar
  23. 23.
    V. K. Shorte and S. Kirkpatrick,Adv. Phys. 20:1279 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • B. E. Vugmeister
    • 1
  • H. Rabitz
    • 1
  1. 1.Department of ChemistryPrinceton UniversityPrinceton

Personalised recommendations