Journal of Statistical Physics

, Volume 88, Issue 1–2, pp 1–29 | Cite as

Entropy, Lyapunov exponents, and mean free path for billiards

  • N. Chernov
Articles

Abstract

We review known results and derive some new ones about the mean free path, Kolmogorov-Sinai entropy, and Lyapunov exponents for billiard-type dynamical systems. We focus on exact and asymptotic formulas for these quantities. The dynamical systems covered in this paper include the priodic Lorentz gas, the stadium and its modifications, and the gas of hard balls. Some open questions and numerical observations are discussed.

Key words

Billiards hard balls Lorentz gas entropy mean free path Lyapunov exponents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. R. Baldwin, The billiard algorithm and KS entropy,J. Phys. A 24: L941-L947 (1991).MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    G. Benettin, Power law behavior of Lyapunov exponents in some conservative dynamical systems,Phys. D 13: 211–220 (1984).MATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    J.-P. Bouchaud and P. Le Doussal, Numerical study of ad-dimensional periodic Lorentz gas with universal properties,J. Statist. Phys. 41: 225–248 (1985).MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    L. A. Bunimovich, On billiards close to dispersing,Math. USSR Sbornik 23: 45–67 (1974).MATHCrossRefGoogle Scholar
  5. 5.
    L. A. Bunimovich, On the ergodic properties of nowhere dispersing billiards,Comm. Math. Phys. 65: 295–312 (1979).MATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    L. A. Bunimovich,On absolutely focusing mirrors, Lect. Notes Math., 1514, Springer, New York, 1990.Google Scholar
  7. 7.
    S. Chapman and T. G. Cowling,The mathematical theory of nonuniform gases, Cambridge U. Press, 1970.Google Scholar
  8. 8.
    N. I. Chernov, A new proof of Sinai's formula for entropy of hyperbolic billiards. Its application to Lorentz gas and stadium,Funct. Anal. Appl. 25: 204–219 (1991).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    N. I. Chernov, and R. Markarian, Entropy of nonuniformly hyperbolic plane billiards,Bol. Soc. Brasil Math. 23: 121–135 (1992).MATHMathSciNetGoogle Scholar
  10. 10.
    N. I. Chernov and C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli,Ergodic Theory and Dynamical Systems 16: 19–44 (1996).MATHMathSciNetGoogle Scholar
  11. 11.
    N. I. Chernov and J. L. Lebowitz, Stationary nonequilibrium states in boundary driven Hamiltonian systems: shear flow,J. Statist. Phys. 86: 953–990 (1997).MATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    V. Donnay, Using intergrability to produce chaos: billiards with positive entropy,Comm. Math. Phys. 141: 225–257 (1991).MATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    J. J. Erpenbeck and W. W. Wood, Molecular-dynamics calculations of the velocity-autocorrelation function. Methods, hard-disk results,Phys. Rev. A 26: 1648–1675 (1982).CrossRefADSGoogle Scholar
  14. 14.
    B. Friedman, Y. Oono, and I. Kubo, Universal behavior of Sinai billiard systems in the small-scatterer limit,Phys. Rev. Lett. 52: 709–712 (1984).MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    G. Gallavotti and D. Ornstein, Billiards and Bernoulli schemes,Comm. Math. Phys. 38: 83–101 (1974).MATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    D. Gass, Enskog theory for a rigid disk fluid,J. Chem. Phys. 54: 1898–1902 (1971).CrossRefADSGoogle Scholar
  17. 17.
    F. Golse, private communication.Google Scholar
  18. 18.
    A. Katok and J.-M. Strelcyn,Invariant manifolds, entropy and billiards; smooth maps with singularities, Lect. Notes Math., 1222, Springer, New York, 1986.MATHGoogle Scholar
  19. 19.
    A. Katok, The groth rate for the number of singular and periodic orbits for a polygonal billiard,Comm. Math. Phys. 111: 151–160 (1987).MATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    M. Lach-had, E. Blaisten-Barojas, and T. Sauer, Irregular scattering of particles confined to ring-bounded cavities, manuscript, 1996.Google Scholar
  21. 21.
    A. Latz, H. van Beijeren, and J. R. Dorfman, Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: kinetic theory, manuscript, 1996; C. Dellago and H. A. Posch, Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: numerical simulations, manuscript, 1996.Google Scholar
  22. 22.
    C. Liverani and M. Wojtkowski, Ergodicity in Hamiltonian systems,Dynamics Reported 4: 130–202 (1995).MATHMathSciNetGoogle Scholar
  23. 23.
    R. Markarian, Billiards with Pesin region of measure one,Comm. Math. Phys. 118: 87–97 (1988).MATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    G. Matheron,Random sets and integral geometry, J. Wiley & Sons, New York, 1975.MATHGoogle Scholar
  25. 25.
    Ya. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,Russ. Math. Surv. 32: 55–114 (1977).MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    L. A. Santaló,Integral geometry and geometric probability, Addison-Wesley Publ. Co., Reading, Mass., 1976.MATHGoogle Scholar
  27. 27.
    Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards,Russ. Math. Surv. 25: 137–189 (1970).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Ya. G. Sinai, Entropy per particle for the system of hard spheres, Harvard Univ. Preprint, 1978.Google Scholar
  29. 29.
    Ya. G. Sinai, Development of Krylov's ideas, Afterwards to N. S. Krylov,Works on the foundations of statistical physics, Princeton Univ. Press, 1979, pp. 239–281.Google Scholar
  30. 30.
    Ya. G. Sinai and N. I. Chernov, Entropy of a gas of hard spheres with respect to the group of space-time translations,Trudy Seminara Petrovskogo 8: 218–238 (1982) English translation in:Dynamical Systems, Ed. by Ya. Sinai, Adv. Series in Nonlinear Dynamics, Vol. 1.MathSciNetADSGoogle Scholar
  31. 31.
    Ya. G. Sinai and N. I. Chernov, Ergodic properties of some systems of 2-dimensional discs and 3-dimensional spheres,Russ. Math. Surv. 42: 181–207 (1987).MathSciNetCrossRefGoogle Scholar
  32. 32.
    D. Szasz, Boltzmann's ergodic hypothesis, a conjecture for centuries?,Sudia Sci. Math. Hung. 31: 299–322 (1996).MATHMathSciNetGoogle Scholar
  33. 33.
    F. Vivaldi, G. Casati, and I. Guarneri, Origin of long-time tails in strongly chaotic systems,Phys. Rev. Lett. 51: 727–730 (1983).MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    M. P. Wojtkowski, Invariant families of cones and Lyapunov exponents,Ergod. Th. Dynam. Sys. 5: 145–161 (1985).MATHMathSciNetGoogle Scholar
  35. 35.
    M. P. Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents,Commun. Math. Phys. 105: 391–414 (1986).MATHMathSciNetCrossRefADSGoogle Scholar
  36. 36.
    M. P. Wojtkowski, Measure theoretic entropy of the system of hard spheres,Ergod. Th. Dynam. Sys. 8: 133–153 (1988).MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    G. M. Zaslavski, Stochasticity in quantum mechanics,Phys. Rep. 80: 147–250 (1981).ADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • N. Chernov
    • 1
  1. 1.Department of MathematicsUniversity of Alabama at BirminghamBirmingham

Personalised recommendations