Journal of Plant Research

, Volume 111, Issue 3, pp 453–458 | Cite as

The promotive effects of a peptidyl plant growth factor, phytosulfokine-α, on the formation of adventitious roots and expression of a gene for a root-specific cystatin in cucumber hypocotyls

  • Seiyei Yamakawa
  • Chiyoko Sakuta
  • Yoshikatsu Matsubayashi
  • Youji Sakagami
  • Hiroshi Kamada
  • Shinobu Satoh
Original Articles


Phytosulfokines (PSKs) were the first peptidyl growth factors from a higher plant to be characterized. They induce the proliferation in suspension culture of mesophyll cells of asparagus (Asparagus officinalis L.; Matsubayashi and Sakagami 1996b). We examined the effects of PSK-α on the formation of adventitious roots on cucumber hypocotyls. The number of roots increased 2- to 2.5-fold after treatment with PSK-α but derivatives of PSK-α were inactive in our assay system. The effect of PSK-α on the formation of adventitious roots was also examined in terms of the expression of a newly isolated gene for a root-specific cystatin of cucumber (RCC). The results indicate that PSK-α can promote organogenesis in plant, acting possibly via enhancement of the proliferation of plant cells.

Key words

Adventitious root Cystatin Cucumber Peptidyl growth factor Phytosulfokine 



conditioned medium




root-specific cystatin of cucumber


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, M., Abe, K., Kuroda, M. andArai, S. 1992. Com kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Eur. J. Biochem.209: 933–937.PubMedCrossRefGoogle Scholar
  2. Arai, S., Watanabe, H., Kondo, H., Emori, Y. andAbe, K. 1991. Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gin-Val-Val-Ala-Gly region conserved among cystatin superfamily members. J. Biochem.109: 294–298.PubMedGoogle Scholar
  3. Barrett, A.J. 1987. The cystatins: a new class of peptidase inhibitors. Trends Biochem. Sci.12: 193–196.CrossRefGoogle Scholar
  4. Basu, R.N., Roy, B.N. andBose, T.K. 1970. Interaction of abscisic acid and auxins in rooting of cuttings. Plant Cell Physiol.11: 681–684.Google Scholar
  5. Ceros, M. andCarbonell, J. 1993. Purification and characterization of a thiol-protease induced during senescence of unpollinated ovaries ofPisum sativum. Physiol. Plant.88: 267–274.CrossRefGoogle Scholar
  6. Fernandes, K.V.S., Sabelli, P.A., Barratt, D.H.P., Richardson, M., Xavier-Filho, J. andShewry, P.R. 1993. The resistance of cowpea seeds to bruchid beetles is not related to levels of cysteine proteinase inhibitors. Plant Mol. Biol.23: 215–219.PubMedCrossRefGoogle Scholar
  7. Koizumi, M., Yamaguchi-Shinozaki, K., Tsuji, H. andShinozaki, K. 1993. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases inArabidopsis thaliana. Gene129: 175–182.PubMedCrossRefGoogle Scholar
  8. Kondo, H., Emori, Y., Abe, K., Suzuki, K. andArai, S. 1989. Cloning and sequence analysis of the genomic DNA fragment encoding oryzacystatin. Gene81: 259–265.PubMedCrossRefGoogle Scholar
  9. Linthorst, H.J.M., van der Does, C., Brederode, F.T. andBol, J.F. 1993. Circadian expression and induction by wounding of tobacco genes for cysteine proteinase. Plant Mol. Biol.21: 685–694.PubMedCrossRefGoogle Scholar
  10. Maniatis, T., Fritisch, E.F. andSambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  11. Matsubayashi, Y., Hanai, H., Hara, O. andSakagami, Y. 1996a. Active fragments and analogs of the plant growth factor, phytosulfokine: structure-activity relationships. Biochem. Biophys. Res. Com.225: 209–214.PubMedCrossRefGoogle Scholar
  12. Matsubayashi, Y. andSakagami, Y. 1996b. Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells ofAsparagus officinalis L. Proc. Natl. Acad. Sci. USA93: 7623–7627.PubMedCrossRefGoogle Scholar
  13. Minami, A. andFukuda, H. 1995. Transient and specific expression of a cysteine endopeptidase associated with autolysis during differentiation ofZinnia mesophyll cells into tracheary elements. Plant Cell Physiol.36: 1599–1606.PubMedGoogle Scholar
  14. Mitsuhashi, M., Shibaoka, H. andShimokoriyama, M. 1969a. Portural: a rooting promoting substance inPortulacea leaves. Plant Cell Physiol.10: 715–723.Google Scholar
  15. Mitsuhashi, M., Shibaoka, H. andShimokoriyama, M. 1969b. Morphological and physiological characterization of IAA-less-sensitive and IAA-sensitive phases in rooting ofAzukia cuttings. Plant Cell Physiol.10: 867–874.Google Scholar
  16. Ojima, A., Shiota, H., Higashi, K., Kamada, H., Shimma, Y., Wada, M. andSatoh, S. 1997. An extracellular insoluble inhibitor of cysteine proteinases in cell cultures and seeds of carrot. Plant Mol. Biol.34: 99–109.PubMedCrossRefGoogle Scholar
  17. Pearce, G., Strydom, D., Johnson, S. andRyan, C.A. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science253: 895–898.CrossRefPubMedGoogle Scholar
  18. Saitoh, E., Kim, H.S., Smithies, O. andMaeda, N. 1987. Human cysteine-proteinase inhibitors: nucleotide sequence analysis of three members of cystatin gene family. Gene61: 329–338.PubMedCrossRefGoogle Scholar
  19. Sande, K.V.D., Pawlowski, K., Czaja, I., Wieneke, U., Scell, J., Schmidt, J., Walden, R., Matvienko, M., Wellink, J., Kammen, A.V., Franssen, H. andBisseling, T. 1996. Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science273: 370–373.PubMedGoogle Scholar
  20. Satoh, S., Iizuka, C., Kikuchi, A., Nakamura, N. andFujii, T. 1992. Proteins and carbohydrates in xylem sap from squash root. Plant. Cell Physiol.33: 841–847.Google Scholar
  21. Scaffer, M.A. andFischer, R.L. 1988. Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato. Plant Physiol.87: 431–436.CrossRefGoogle Scholar
  22. Shibaoka, H., Mitsuhashi, M. andShimokoriyama, M. 1967. Promotion of advantitious root formation by heliagine and its removal by cysteine. Plant Cell Physiol.8, 161–170.Google Scholar
  23. Stuart, R. andStreet, H.E. 1969. Studies on the growth in culture of plant cells: IV. The initiation of division in suspensions of stationary-phase cells ofAcer pseudoplatanus L. J. Exp. Bot.20: 556–571.Google Scholar
  24. Thimann, K.V. andWent, F.W. 1934. A test method for rhizocaline, a root-forming substance. Proc. Kon. Akad., Wetensch. Amsterdam37: 445–455.Google Scholar
  25. Thimann, K.V. andKoepfi, J.B. 1935. Identity of the growth-promoting and root-forming substances of plants. Nature135: 101–102.Google Scholar
  26. Watanabe, H., Abe, K., Emori, Y., Hiroyama, H. andArai, S. 1991. Molecular cloning and gibberellin-induced expression of multiple cysteine proteases of rice seeds (oryzains). J. Biol. Chem.266: 16897–16902.PubMedGoogle Scholar
  27. Yu, W.J. andGreenwood, J.S. 1994. Purification and characterization of a cysteine proteinase involved in globulin hydrolyzation in germinatedVicia faba L. J. Exp. Bot.45: 261–268.Google Scholar

Copyright information

© The Botanical Society of Japan 1998

Authors and Affiliations

  • Seiyei Yamakawa
    • 1
  • Chiyoko Sakuta
    • 1
  • Yoshikatsu Matsubayashi
    • 2
  • Youji Sakagami
    • 2
  • Hiroshi Kamada
    • 1
  • Shinobu Satoh
    • 1
  1. 1.Institute of Biological SciencesUniversity of TsukubaTsukuba, IbarakiJapan
  2. 2.Department of Biological SciencesNagoya UniversityNagoyaJapan

Personalised recommendations