Advertisement

Journal of Plant Research

, Volume 111, Issue 1, pp 167–177 | Cite as

Apoplast as the site of response to environmental signals

  • Takayuki Hoson
JPR Symposium

Abstract

When the life cycle of plants is influenced by various environmental signals, the mechanical properties of the cell wall are greatly changed. These signals also modify the levels and structure of the cell wall constituents and such modifications are supposed to be the cause of the changes in the wall mechanical properties. These changes in the cell wall, the major component of the apoplast, can be recognized as the response of plants to environmental signals. The analysis of the mechanism leading to the response suggests that the apoplast is involved not only in the response but also in the perception and transduction of environmental signals in concert with the receptors of signals located on the plasma membrane. Thus, the apoplast plays a principal role in the communication of plants with the outer world and enables the plants to adapt themselves and survive in the environment full of stresses.

Key words

Apoplast Cell wall Environmental signal Gravity Light Water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azuma, T., Sumida, Y., Kaneda, Y., Uchida, N. andYasuda, T. 1996. Changes in cell wall polysaccharides in the internodes of submerged floating rice. Plant Growth Regul.19: 183–187.CrossRefGoogle Scholar
  2. Bagshaw, S.L. andCleland, R.E. 1990. Wall extensibility and gravitropic curvature of sunflower hypocotyls: correlation between timing of curvature and changes in extensibility. Plant Cell Environ.13: 85–89.PubMedCrossRefGoogle Scholar
  3. Biddington, N.L. 1986. The effects of mechanically-induced stress in plants-a review. Plant Growth Regul.4: 103–123.CrossRefGoogle Scholar
  4. Bogre, L., Ligterink, W., Heberlebors, E. andHirt, H. 1996. Mechanosensors in plants. Nature383: 489–490.PubMedCrossRefGoogle Scholar
  5. Bozarth, C.S., Mullet, J.E. andBoyer, J.S. 1987. Cell wall proteins at low water potentials. Plant Physiol.85: 261–267.PubMedGoogle Scholar
  6. Braam, J. 1992. Regulated expression of the calmodulin-relatedTCH genes in culturedArabidopsis cells: induction by calcium and heat shock. Proc. Natl. Acad. Sci. USA89: 3213–3216.PubMedCrossRefGoogle Scholar
  7. Braam, J. andDavis, R.W. 1990. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes inArabidopsis. Cell60: 357–364.PubMedCrossRefGoogle Scholar
  8. Braam, J., Sistrunk, M.L., Polisensky, D.H., Xu, W., Purugganan, M.M., Antosiewicz, D.M., Campbell, P. andJohnson, K.A. 1996. Life in a changing world:TCH gene regulation of expression and responses to environmental signals. Physiol. Plant.98: 909–916.PubMedCrossRefGoogle Scholar
  9. Braam, J., Sistrunk, M.L., Polisensky, D.H., Xu, W., Purugganan, M.M., Antosiewicz, D.M., Campbell, P. andJohnson, K.A. 1997. Plant responses to environmental stress: regulation and functions of theArabidopsis TCH genes. Planta203: S35-S41.PubMedCrossRefGoogle Scholar
  10. Burke, J.J. andOrzech, K.A. 1988. The heat-shock response in higher plants: a biochemical model. Plant Cell Environ.11: 441–444.CrossRefGoogle Scholar
  11. Chazen, O. andNeumann, P.M. 1994. Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zea mays L.) leaves are primary responses to polyethylene glycol-induced water deficits. Plant Physiol.104: 1385–1392.PubMedGoogle Scholar
  12. Chen, L., Kamisaka, S. andHoson, T. 1996. (1→3) (1→4)-β-D-glucan-degrading enzymes in the cell wall of air-and water-grown rice coleoptiles. Plant Cell Physiol.37: S467.Google Scholar
  13. Chen, L., Kamisaka, S. and Hoson, T. 1998. Suppression of (1→3) (1→4)-β-D-glucan hydrolysis is involved in inhibition of rice coleoptile growth by light. Plant Cell Physiol. (abstract in press).Google Scholar
  14. Cho, H. -T. andKende, H. 1997. Expansins and internodal growth of deepwater rice. Plant Physiol.113: 1145–1151.PubMedCrossRefGoogle Scholar
  15. Cosgrove, D.J. 1990. Gravitropism of cucumber hypocotyls: biophysical mechanism of altered growth. Plant Cell Environ.13: 235–241.PubMedCrossRefGoogle Scholar
  16. Cosgrove, D.J. andHedrich, R. 1991. Stretch activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells ofVicia faba L. Planta186: 143–153.PubMedCrossRefGoogle Scholar
  17. Covarrublas, A.A., Ayala, J.W., Reyes, J.L., Hernandez, M. andGarciarrubio, A. 1995. Cell-wall proteins induced by water deficit in bean (Phaseolus, vulgaris L.) seedlings. Plant Physiol.107: 1119–1128.Google Scholar
  18. Cowan, A.K., Richardson, G.R. andMaurel, J.C.G. 1997. Stress-induced abscisic acid transients and stimulus-response-coupling. Physiol. Plant.100: 491–499.CrossRefGoogle Scholar
  19. Cowles, J.R., Scheld, H.W., LeMay, R. andPeterson, C. 1984. Experiments on plants grown in space: growth and lignification in seedlings exposed to eight days of microgravity. Ann. Bot.54(S3): 33–48.PubMedGoogle Scholar
  20. Cramer, G.R. 1992. Kinetics of maize leaf elongation. III. Silver thiosulfate increases the yield threshold of saltstressed plants, but ethylene is not involved. Plant Physiol.100: 1044–1047.PubMedGoogle Scholar
  21. Delmer, D.P. andAmor, Y. 1995. Cellulose biosynthesis. Plant Cell7: 987–1000.PubMedCrossRefGoogle Scholar
  22. Ding, J.P. andPickard, B.G. 1993. Mechanosensory calcium-selective cation channels in epidermal cells. Plant J.3: 83–110.CrossRefGoogle Scholar
  23. Duncan, R.L. 1997. Mechanosensitive ion channels in osteoblasts: identification of a possible mechanotransduction pathway.In A. Sato, ed. Frontiers of Biological Science in Space. Molecular Mechanism of the Gravity Response in Cells, Taiyo Printing, pp. 22–34.Google Scholar
  24. Edelmann, H.G. andSievers, A. 1995. Unequal distribution of osmiophilic particles in the epidermal periplasmic space of upper and lower flanks of gravi-responding rye coleoptiles. Planta196: 396–399.PubMedCrossRefGoogle Scholar
  25. Fry, S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol.37: 165–186.CrossRefGoogle Scholar
  26. Gibeaut, D.M., Karuppiah, N., Chang, S. -R., Brock, T.G., Vadlamudi, B., Kim, D., Ghosheh, N.S., Rayle, D.L., Carpita, N.C. andKaufman, P.B. 1990. Cell wall and enzyme changes during graviresponse of the leafsheath pulvinus of oat (Avena sativa). Plant Physiol.94: 411–416.PubMedGoogle Scholar
  27. Goodwin, W., Pallas, J.A. andJenkins, G.I. 1996. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced inBrassica napus. Plant Mol. Biol.31: 771–781PubMedCrossRefGoogle Scholar
  28. Hager, A. 1996. Properties of a blue-light-absorbing photoreceptor kinase localized in the plasma membrane of the coleoptile tip region. Planta198: 294–299.PubMedCrossRefGoogle Scholar
  29. Hager, A., Menzel, H. andKrauss, A. 1971. Versuche und Hypothese zur Primarwirkund des Auxins beim Streckungswachstum. Planta100: 47–75.CrossRefGoogle Scholar
  30. Harada, K., Soga, K., Wakabayashi, K., Hoson, T. andKamisaka, S. 1997. Effect of hypergravity on growth of maize seedlings. Biol. Sci. Space11: 254–255 (in Japanese).Google Scholar
  31. Hartley, R.D. 1973. Carbohydrate esters of ferulic acid as components of cell walls ofLolium multiflorum. Phytochemistry12: 661–665.CrossRefGoogle Scholar
  32. Hayashi, T. 1989. Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol.40: 139–168.CrossRefGoogle Scholar
  33. Hirasawa, T., Takahashi, H., Suge, H. andIshihara, K. 1997. Water potential, turgor and cell wall properties in elongating tissues of the hydrotropically bending roots of pea (Pisum sativum L.). Plant Cell Environ.20: 381–386.CrossRefGoogle Scholar
  34. Hoa, L.V., Kuraishi, S. andSakurai, N. 1994. Aluminuminduced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol.106: 971–976.Google Scholar
  35. Hoson, T. 1991. Structure and function of plant cell walls: immunological approaches. Int. Rev. Cytol.130: 233–268.CrossRefGoogle Scholar
  36. Hoson, T. 1993. Regulation of polysaccharide breakdown during auxin-induced cell wall loosening. J. Plant Res.106: 369–381CrossRefGoogle Scholar
  37. Hoson, T. 1994. Automorphogenesis of maize roots under simulated microgravity conditions. Plant Soil165: 309–314.CrossRefGoogle Scholar
  38. Hoson, T., Kamisaka, S., Masuda, Y. andYamashita, M. 1992. Changes in plant growth processes under microgravity conditions simulated by a three-dimensional clinostat. Bot. Mag. Tokyo105: 53–70.CrossRefGoogle Scholar
  39. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M. andBuchen, B. 1997a. Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta203: S187-S197.PubMedCrossRefGoogle Scholar
  40. Hoson, T., Kamisaka, S., Yamamoto, R., Yamashita, M. andMasuda, Y. 1995a. Automorphosis of maize shoots under simulated microgravity on a three-dimensional clinostat. Physiol. Plant.93: 346–351.CrossRefGoogle Scholar
  41. Hoson, T., Kamisaka, S., Yamashita, M. andMasuda, Y. 1995b. Morphogenesis and cell wall changes in maize shoots under simulated microgravity conditions. Biol. Sci. Space9: 337–344.PubMedCrossRefGoogle Scholar
  42. Hoson, T., Kamisaka, S., Yamashita, M. andMasuda, Y. 1997b. Cell wall changes during automorphic curvature of maize shoots on a 3-D clinostat. Plant Physiol.114: S343.Google Scholar
  43. Hoson, T., Maeda, S., Sakaguchi, K., Onishi, H. andOhta, H. 1990. Changes in osmotic pressure and cell wall properties during auxin- and ethylene-induced growth of infact coleoptiles of rice. Physiol. Plant.78: 277–284.CrossRefGoogle Scholar
  44. Hoson, T., Nishitani, K., Miyamoto, K., Ueda, J., Kamisaka, S., Yamamoto, R. andMasuda, Y. 1996. Effects of hypergravity on growth and cell wall properties of cress hypocotyls. J. Exp. Bot.47: 513–518.PubMedGoogle Scholar
  45. Hoson, T. andWada, S. 1980. Role of hydroxyproline-rich cell wall protein in growth regulation of rice coleoptiles grown on or under water. Plant Cell Physiol.21: 511–524.Google Scholar
  46. Hoson, T. andWada, S. 1983. Possible role of hexosamine-containing cell wall component in growth regulation of rice coleoptiles. Plant Cell Physiol.24: 1421–1430.Google Scholar
  47. Hughes, M.A. andDunn, M.A. 1996. The molecular biology of plant acclimation to low temperature. J. Expt. Bot.47: 291–305.Google Scholar
  48. Iraki, N.M., Bressan, R.A., Hasegawa, P.M. andCarpita, N.C. 1989. Alteration of the physical and chemical structure of the primary cell wall of growth-limited plant cells adapted to osmotic stress. Plant Physiol.91: 39–47.PubMedGoogle Scholar
  49. Ishizawa, K. andEsashi, Y. 1984., Gaseous factors involved in the enhanced elongation of rice coleoptiles under water. Plant Cell Environ.7: 239–245.Google Scholar
  50. Itoh, K., Nakamura, Y., Kawata, H., Yamada, T., Ohta, E. andSakata, M. 1987. Effect of osmotic stress on turgor pressure in mung bean root cells. Plant Cell Physiol.28: 987–994.Google Scholar
  51. Iwami, S. andMasuda, Y. 1974. Geograpic response of cucumber hypocotyls. Plant Cell Physiol.15: 121–129.Google Scholar
  52. Jackson, M.B. 1985. Ethylene and responses of plants to soil waterlogging and submergency. Annu. Rev. Plant Physiol36: 145–174.CrossRefGoogle Scholar
  53. Jaffe, M.J. 1973. Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation with special reference toBryonia dioica. Planta114: 143–157.CrossRefGoogle Scholar
  54. Jaffe, M.J., Telewski, F.W. andCooke, P.W. 1984. Thigmomorphogeneis: On the mechanical properties of mechanically pertubed, bean plants. Physiol. Plant.62: 73–78.PubMedCrossRefGoogle Scholar
  55. Kasahara, H., Shiwa, M., Takeuchi, Y. andYamada, M. 1995. Effects of hypergravity on the elongation growth in radish and cucumber hypocotyls. J. Plant Res.108: 59–64.PubMedCrossRefGoogle Scholar
  56. Kaufman L.S. 1993. Transduction of blue-light signals. Plant Physiol.102: 333–337.PubMedGoogle Scholar
  57. Kigel, J. andCosgrove, D.J. 1991. Photoinhibition of stem elongation by blue and red light. Effects of hydraulic and cell wall properties. Plant Physiol.95: 1049–1056.PubMedGoogle Scholar
  58. Kutschera, U. 1989a. Tissue stresses in growing plant organs. Physiol. Plant77: 157–163.CrossRefGoogle Scholar
  59. Kutschera, U. 1989b. Growth, in-vivo extensibility and tissue tension in mung bean seedlings subjected to water stress. Plant Sci.61: 1–7.CrossRefGoogle Scholar
  60. Kutschera, U., Hoss, R., Frohlich, M. andHoson, T. 1993. Analysis of the growth response of air-grown rice coleoptiles to submergence. Bot. Acta106: 164–169.Google Scholar
  61. Kutschera, U. andKende, H. 1988. The biophysical basis of elongation growth in internodes of deepwater rice. Plant Physiol.88: 361–366.PubMedGoogle Scholar
  62. Labrador, E., Rodriguez, D. andNicolas, G. 1987. Changes in cell wall composition of embryonic axes of germinatingCicer arietinum L. seeds: effects of abscisic acid and temperature. Plant Sci.48: 23–30.CrossRefGoogle Scholar
  63. Masuda, Y. 1990. Auxin-induced cell elongation and cell wall changes. Bot. Mag. Tokyo103: 345–370.CrossRefGoogle Scholar
  64. Masuda, Y., Kamisaka, S. and Hoson, T. 1998. Growth behaviour of rice coleoptiles. J. Plant Physiol. (in press).Google Scholar
  65. Masuda, Y., Kamisaka, S., Yamamoto, R., Hoson, T. andNishitani, K. 1994a. Changes in the rheological properties of the cell wall of plant seedlings under simulated microgravity conditions. Biorheology31: 171–177.PubMedGoogle Scholar
  66. Masuda, Y., Kamisaka, S., Yamamoto, R., Hoson, T. andNishitani, K. 1994b. Plant responses to simulated microgravity. Adv. Space Biol. Met.4: 111–126.CrossRefGoogle Scholar
  67. Masuda, Y., Kamisaka, S., Yanagisawa, H. andSuzuki, Y. 1981. Effect of light on growth and metabolic activities in pea seedings. I. Changes in cell wall polysaccharides during growth in the dark and in the light Biochem. Physiol. Pflanzen176: 23–34.Google Scholar
  68. Masuda, Y., Pjon, C. -J. andFuruya, M. 1970. Phytochrome action ofOryza sativa L. V. Effects of decapitation and red and far-red light on cell wall extensibility. Planta90: 236–242.CrossRefGoogle Scholar
  69. McNeil, M., Darvill, A.G., Fry S.C. andAlbersheim, P. 1984. Structure and function of the primary cell walls of plants. Annu. Rev. Biochem.53: 625–663.PubMedCrossRefGoogle Scholar
  70. McQueen-Mason, S., Durachko, D.M. andCosgrove, D.J. 1992. Two endogenous proteins that induced cell wall extension in plants. Plant Cell4: 1425–1433.PubMedCrossRefGoogle Scholar
  71. Miyamoto, K., Mitani, Y., Soga, K., Ueda, J., Wakabayashi, K., Hason, T., Kamisaka, S. andMasuda, Y. 1997. Modification of chemical properties of cell wall polysaccharides in the inner tissues by white light in relation to the decrease in tissue tension inPisum sativum epicotyls. Physiol. Plant.101: 38–44.CrossRefGoogle Scholar
  72. Miyamoto, K., Ueda, J., Hoson, T., Kamisaka, S. andMasuda, Y. 1992. Inhibition ofPisum sativum epicotyl elongation by white light-differential effects of light on the mechanical properties of cell walls in epidermis and inner tissues. Physiol. Plant.84: 380–385.CrossRefGoogle Scholar
  73. Miyamoto, K., Ueda, J., Ida, K., Hoson, T., Masuda, Y. andKamisaka, S. 1994. Light-induced increase in the contents of ferulic and diferulic acids in cell walls ofAvena coleoptiles-their relationships to growth inhibition by light. Physiol. Plant.92: 350–355.CrossRefGoogle Scholar
  74. Montague, M.J. 1995. Hormonal and gravitropic specificity in the regulation of growth and cell wall synthesis in pulvini and internodes from shoots ofAvena sativa L. (oat). Plant Physiol.107: 553–564.PubMedGoogle Scholar
  75. Morgan, P.W. andDrew, M.C. 1997. Ethylene and plant responses to stress. Physiol. Plant.100: 620–630.CrossRefGoogle Scholar
  76. Morris, C.E. 1990. Mechanosensitive ion channels. J. Membr. Biol.113: 93–107.PubMedCrossRefGoogle Scholar
  77. Muñoz, F.J., Dopico, B. andLabrador, E. 1993a. Effect of osmotic stress on the growth of epicotyls ofCicer arientinum in relation to changes in cell wall composition. Physiol. Plant.87: 552–560.CrossRefGoogle Scholar
  78. Muñoz, F.J., Labrador, E. andDopico, B. 1993b. Effect of osmotic stress on the growth of epicotyls ofCicer arientinum in relation to changes in the autolytic process and glycanhydrolytic cell, wall enzymes. Physiol. Plant.87: 544–551.CrossRefGoogle Scholar
  79. Nedukha, E.M. 1996. Possible mechanisms of plant cell wall changes at microgravity. Adv. Space Res.17(6/7): 37–45.PubMedCrossRefGoogle Scholar
  80. Neumann, P.M. 1993. Rapid and reversible modifications of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant Cell Environ16: 1107–1114.CrossRefGoogle Scholar
  81. Neumann, P.M., Volkenburgh, E.V. andCleland, R.E. 1988. Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility. Plant Physiol.88: 233–237.PubMedGoogle Scholar
  82. Nishida, I. andMurata, N. 1996. Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol.47:541–568.PubMedCrossRefGoogle Scholar
  83. Nishitani, K. 1995. Endo-xyloglucan transferase, a new class of transferase involved in cell wall construction. J. Plant Res.108: 137–148.CrossRefGoogle Scholar
  84. Nishizaki, Y. 1996. Effects of blue light on electrical potential and turgor in pulvinar motor cells ofPhaseolus. J. Plant Res.109: 93–97.CrossRefGoogle Scholar
  85. Nonami, H. andBoyer, J.S. 1990. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. Plant Physiol.93: 1610–1619.PubMedGoogle Scholar
  86. Okazaki, Y., Nishizaki, Y. andIwasaki, N. 1995. Effects of a pulse of blue light on the extracellular pH in the pulvinus ofPhaseolus vulgaris L.: measurements with a double-barreled pH-sensitive electrode. Plant Cell Physiol.36: 1131–1134.Google Scholar
  87. Parvez, M.M., Wakabayashi, K., Hoson, T. andKamisaka, S. 1996. Changes in cellular osmotic potential and mechanical properties of cell walls during light-induced inhibition of cell elongation in maize coleoptiles. Physiol. Plant.96: 179–185.CrossRefGoogle Scholar
  88. Parvez, M.M., Wakabayashi, K., Hoson, T. andKamisaka, S. 1997. White light promotes the formation of diferulic acid in maize coleoptile cell walls by enhancing PAL activity. Physiol. Plant.99: 39–48.CrossRefGoogle Scholar
  89. Parvez, M.M., Wakabayashi, K., Hoson, T. and Kamisaka, S. 1998. White light-induced sugar distribution controls growth and osmotic properties in the coleoptile and the first leaf inZea mays seedings. Physiol. Plant. (in press).Google Scholar
  90. Polisensky, D.H. andBraam, J. 1996. Cold-shock regulation of the ArabidopsisCH genes and the effects of modulating intracellular calcium, levels. Plant Physiol.111: 1271–1279.PubMedCrossRefGoogle Scholar
  91. Pritchard, J., Hetherington, P.R., Fry, S.C. andTomos, A.D. 1993. Xyloglucan endotransglycosylase activity, micrifibri orientation and the profiles of cell wall properties along growting regions of maize roots. J. Expt. Bot.44: 1281–1289.Google Scholar
  92. Rajashekar C.B. andLafta, A. 1996. Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiol.111: 605–612.PubMedGoogle Scholar
  93. Revilla, G. andZerra, I. 1987. Changes in the molecular weight distribution of the hemicellulosic polysaccharides from rice coleoptiles growing under different conditions. J. Exp. Bot.38: 1818–1825Google Scholar
  94. Reymond, P., Short, T.W. andBriggs, W.R. 1992. Blue light activates a specific protein kinase in higher plants. Plant Physiol.100: 655–661.PubMedGoogle Scholar
  95. Sakurai, N. 1991. Cell wall functions in growth and development-a physical and chemical point of view. Bot. Mag. Tokyo104: 235–251.CrossRefGoogle Scholar
  96. Sakurai, N. andKuraishi, S. 1988. Water potential and mechanical properties of the cell wall of hypocotyls of dark-grown squash (Cucurbita maxima Duch.) under water stress conditions. Plant Cell Physiol.29: 1337–1343.Google Scholar
  97. Sakurai, N., Tanaka, S. andKuraishi S. 1987a. Changes in wall polysaccharides of squash (Cucurbita maxima Duch.) hypocotyls under water stress condition. I. Wall sugar composition and growth as affected by water stress. Plant Cell Physiol.28: 1051–1058.Google Scholar
  98. Sakurai, N., Tanaka, S. andKuraishi, S. 1987b. Changes in wall polysaccharides of squash (Cucurbita maxima Duch.) hypocotyls under water stress, condition. II. Composition of pectic and hemicellulosic polysaccharides. Plant Cell Physiol.28: 1059–1070.Google Scholar
  99. Sauter, M. andKende H. 1992. Levels of β-glucan and lignin in elongating internodes of deepwater, rice. Plant Cell Physiol.33: 1089–1097.Google Scholar
  100. Sawicka, T. andKacperska, A. 1994. Soluble and cell wall-associated β-galactosidase from cold-grown winter rape (Brassica napus L., var. oleifera L.) leaves. J. Plant Physiol.145: 357–362.Google Scholar
  101. Shen-Miller, J. andMasuda, Y. 1973. Kinetics of stress relaxation properties of oat coleoptile cell wall after geotropic stimulation. Plant Physiol.51: 464–467.PubMedGoogle Scholar
  102. Shimmen, T. 1997. Studies on mechanoperception in characean cells: pharmacological analysis. Plant Cell Physiol.38: 139–148.Google Scholar
  103. Shinkle, J.R., Swoap, S.J., Simon, P. andJones R.L. 1992. Cell wall free space ofCucumis hypocotyls contains NAD and a blue light-regulated peroxidase activity. Plant Physiol.98: 1336–1341.PubMedGoogle Scholar
  104. Shinozaki, K. andYamaguchi-Shinozaki, K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol.115: 327–334.PubMedCrossRefGoogle Scholar
  105. Short, T.W. andBriggs, W.R. 1994. The transduction of blue light signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.45: 143–171.CrossRefGoogle Scholar
  106. Sibaoka, T. 1991. Rapid plant movements triggered by action potentials. Bot. Mag. Tokyo104: 73–95.CrossRefGoogle Scholar
  107. Soga, K., Harada, K., Wakabayashi, K., Hoson, T. and Kamisaka, S. 1998. Growth inhibition of azuki bean and maize seedlings by hypergravity. Plant Cell Physiol. (abstract in press).Google Scholar
  108. Spalding, E.P. andCosgrove, D.J. 1992. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls. Planta188: 199–205.PubMedCrossRefGoogle Scholar
  109. Staehelin, L.A. andMoore, I. 1995. The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol.46: 261–288.Google Scholar
  110. Tabuchi, A., Kamisaka, S. andHoson, T. 1997. Purification of xyloglucan hydrolase/endotransferase from cell walls of azuki bean epicotyls. Plant Cell Physiol.38: 653–658.Google Scholar
  111. Takahashi, H. 1997. Hydrotropsim: the current state of our knowledge. J. Plant Res.110: 163–169.PubMedGoogle Scholar
  112. Talbott, L.D. andPickard, B.G. 1994. Differential changes in size distribution of xyloglucan in the cell walls of gravitropically respondingPisum sativum epicotyls. Plant Physiol.106: 755–761.PubMedGoogle Scholar
  113. Tan, K. -S., Hoson, T., Masuda, Y. andKamisaka, S. 1991. Correlation between cell wall extensibility and the content of diferulic and ferulic acids in cell walls ofOryza sativa coleoptiles grown under water and in air. Physiol. Plant.83: 397–403.CrossRefGoogle Scholar
  114. Tan, K. -S., Hoson, T., Masuda, Y. andKamisaka, S. 1992. Involvement of cell wall-bound diferulic acid in light-induced decrease in growth rate and cell wall extensibility ofOryza coleoptiles. Plant Cell Physiol.33: 103–108.Google Scholar
  115. Tanimoto, E., andMasuda, Y. 1971. Role of the epidermis in auxin-induced elongation of light-grown pea stem segments. Plant Cell Physiol.12: 663–673.Google Scholar
  116. Valero, P. andLabrador, E. 1996. Effect of water stress on the LiCl extracted-cell wall proteins and glycanhydrolytic enzymes during growth ofCicer arietinum epicotyls. Plant Physiol. Biochem.34: 307–313.Google Scholar
  117. Wada, S. 1961. Growth patterns of rice coleoptile grown on water and under water. Sci. Rep. Tohoku Univ. 4th Ser.27: 199–207.Google Scholar
  118. Wakabayashi, K., Hoson, T. andKamisaka, S. 1997a. Osmotic stress-induced growth suppression of dark-grown wheat (Triticum aestivum L.) coleoptiles. Plant Cell Physiol.38: 297–303.Google Scholar
  119. Wakabayashi, K., Hoson, T. andKamisaka, S. 1997b. Osmotic stress suppresses cell wall stiffening and the increase in cell wall-bound ferulic and diferulic acids in wheat coleoptiles. Plant Physiol.113: 967–973.PubMedGoogle Scholar
  120. Wakabayashi, K., Hoson, T. andKamisaka, S. 1997c. Changes in amounts and molecular mass distribution of cel-wall polysaccharides of wheat (Triticum aestivum L.) coleoptiles under water stress. J. Plant Physiol.151: 33–40.Google Scholar
  121. Wakabayashi, K., Hoson, T. andKamisaka, S. 1997d. Suppression of cell wall stiffening along coleoptiles of wheat (Triticum aestivum L.) seedlings grown under osmotic stress conditions. J. Plant Res.110: 311–316.Google Scholar
  122. Wakabayashi, K., Hoson, T. andKamisaka, S. 1997e. Abscisic acid suppresses the increases in cell wall-bound ferulic and diferulic acid levels in dark-grown wheat (Triticum aestivum L.) coleoptiles. Plant Cell Physiol.38: 811–817.Google Scholar
  123. Waldron, K.W. andBrett, C.T. 1990. Effects of extreme acceleration on the germination, growth and cell wall composition of pea epicotyls. J. Expt. Bot.41: 71–77.Google Scholar
  124. Weiser, R.L., Wallner, S.J. andWaddell, J.W. 1990. Cell wall and extensin mRNA changes during cold acclimation of pea seedlings. Plant Physiol.93: 1021–1026.PubMedCrossRefGoogle Scholar
  125. Wu, Y., Sharp, R.E., Durachko, D.M. andCosgrove, D.J. 1996. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansins activity, and wall susceptibility to expansins. Plant Physiol.111: 765–772.PubMedGoogle Scholar
  126. Xu, W., Purugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C. andBraam, J. 1995. ArabidposisTCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell7: 1555–1567.PubMedCrossRefGoogle Scholar
  127. Zarra, I. andMasuda Y. 1979. Growth and cell wall changes in rice coleoptiles growing under different conditions. I. Changes in turgor pressure and cell wall polysaccharides during intact growth. Plant Cell Physiol.20: 1117–1124.Google Scholar
  128. Zhong, H. andLäuchli, A. 1993. Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J. Expt. Bot.44; 773–778.Google Scholar
  129. Zwiazek, J.J. 1991. Cell wall changes in white spruce (Picea glauca) needles subjected to repeated drought stress. Physiol. Plant.82: 513–518.CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan 1998

Authors and Affiliations

  • Takayuki Hoson
    • 1
  1. 1.Department of Biology, Faculty of ScienceOsaka City UniversityOsakaJapan

Personalised recommendations