Asymptotically nearly efficient procedures for bivariate location parameters

  • D. S. Moore


Location Parameter Asymptotic Distribution Asymptotic Efficiency Asymptotic Covariance Matrix Sample Quantile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bickel, P. J. (1965). On some asymptotically nonparametric competitors of Hotelling'sT 2,Ann. Math. Statist. 36, 160–173.zbMATHGoogle Scholar
  2. [2]
    Hannan E. J. (1956). The asymptotic power of tests based upon multiple correlation,J. Roy. Statist. Soc., Ser. B,18, 227–233.zbMATHMathSciNetGoogle Scholar
  3. [3]
    Moore, D. S. (1969). Asymptotically nearly efficient estimators of multivariate location parameters,Ann. Math. Statist.,40, 1809–1823.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Ogawa, J. (1951). Contributions to the theory of systematic statistics,Osaka Math. J.,3, 175–213.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Schmetterer, L. (1966).Mathematische Statistik, 2. Aufl., Springer-Verlag, Wien.zbMATHGoogle Scholar
  6. [6]
    Sen P. K. and Puri, M. L. (1967). On the theory of rank order tests for location in the multivariate one sample problem,Ann. Math. Statist.,38, 1216–1228.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Tischendorf, J. A. (1955). Linear estimation techniques using order statistics, unpublished dissertation, Purdue University.Google Scholar

Copyright information

© The Institute of Statistical Mathematics 1970

Authors and Affiliations

  • D. S. Moore
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations