Annali di Matematica Pura ed Applicata

, Volume 178, Issue 1, pp 225–233 | Cite as

Infinitely many turning points for some supercritical problems

  • E. N. Dancer


Dirichlet Boundary Condition Bifurcation Point Critical Group Morse Index Radial Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    H. Amann,Multiple fixed points of asymptotically linear maps, J. Funct. Anal.,17 (1974), pp. 174–213.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. BahriP. L. Lions,Solutions of superlinear elliptic equations and their indices, Comm. Pure Appl. Math.,45 (1992), pp. 1205–1215.zbMATHMathSciNetGoogle Scholar
  3. [3]
    M. F. Bidaut-VeronL. Veron,Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Inv. Math.,106 (1991), pp. 489–539.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. BuddJ. Norbury,Semilinear elliptic equations and supercritical growth, J. Diff. Eqns.,68 (1987), pp. 169–197.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    B. BuffoniE. N. DancerJ. Toland,Sur les ondes de Stokes et une conjecture de Levi-Civita, C. R. Acad. Sci. Paris,326 (1998), pp. 1265–1268.zbMATHMathSciNetGoogle Scholar
  6. [6]
    B. Buffoni—E. N. Dancer—J. Toland,The subharmonic bifurcation of Stokes Waves, to appear.Google Scholar
  7. [7]
    K. C. Chang,Infinite dimensional Morse theory and multiple solution problems, Birkauser, Boston, 1993.zbMATHGoogle Scholar
  8. [8]
    Wenxiong ChenCongming Li,Classification of solutions of some nonlinear elliptic equations, Duke Math. J.,63 (1991), pp. 615–622.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. CrandallP. H. Rabinowitz,Bifurcation from simple eigenvalues, J. Funct. Anal.,8 (1971), pp. 321–340.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. N. Dancer,Some near critical problems, in preparation.Google Scholar
  11. [11]
    E. N. Dancer,Global structure of the solution set of nonlinear real analytic eigenvalue problems, Proc. London Math. Soc.,26 (1973), pp. 359–384.zbMATHMathSciNetGoogle Scholar
  12. [12]
    E. N. Dancer,On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Diff. Eqns.,37 (1980), pp. 404–437.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    E. N. Dancer,On the number of positive solutions of some weakly nonlinear elliptic equations when a parameter is large, Proc. London Math. Soc.,53 (1986), 429–452.zbMATHMathSciNetGoogle Scholar
  14. [14]
    E. N. Dancer,Some notes on the method of moving planes, Bull. Austral. Math. Soc.,46 (1992), pp. 425–434.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    E. N. Dancer,Global breaking of symmetry of positive solutions on two-dimensional annuli, Diff. Integral. Eqns.,5 (1992), pp. 903–914.zbMATHMathSciNetGoogle Scholar
  16. [16]
    E. N. Dancer,Counterexamples to some conjectures on the number of solutions of nonlinear elliptic equations, Math. Ann.,272 (1985), pp. 421–440.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    E. N. Dancer,On the number of positive solutions of some weakly nonlinear equations on annular regions, Math. Zeit.,206 (1991), pp. 551–562.zbMATHMathSciNetGoogle Scholar
  18. [18]
    E. N. Dancer—Kewei Zhang,Uniqueness of solutions for some elliptic equations and systems in nearly star shaped domains, to appear in Nonlinear Analysis TMA.Google Scholar
  19. [19]
    N. DunfordJ. Schwartz Linear Operators, vol. II, Interscience, New York, 1963.zbMATHGoogle Scholar
  20. [20]
    N. GhoussoubC. Gui,On a conjecture of De Giorgi and some related problems, Math. Ann.,311 (1998), pp. 481–491.zbMATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    B. GidasW. M. NiL. Nirenberg,Symmetry and related properties by the maximum principle, Comm. Math. Phys.,68 (1979), pp. 209–243.zbMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. JosephT. Lungren,Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal.,49 (1973), pp. 241–269.zbMATHGoogle Scholar
  23. [23]
    W. M. NiR. Nussbaum,Uniqueness and nonuniqueness of positive radial solutions of Δu+f(r,u)=0 Comm. Pure App. Math.,38 (1985), pp. 67–108.zbMATHMathSciNetGoogle Scholar
  24. [24]
    P. H. Rabinowitz,Some global results for nonlinear eigenvalue problems, J. Funct. Anal.,7 (1971), pp. 487–513.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    B. Rynne,The structure of Rabinowitz global continua for generic quasilinear elliptic equations, Nonlinear Analysis,32 (1998), pp. 167–181.zbMATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    K. Rybakowski The homotopy index and partial differential equations, Springer Verlag, Berlin, 1987.zbMATHGoogle Scholar
  27. [27]
    J. SautR. Teman,Generic properties of nonlinear boundary value problems, Comm. Partial. Diff. Eqns.,4 (1979), pp. 293–319.zbMATHGoogle Scholar
  28. [28]
    R. Schaaf,Uniqueness for semilinear elliptic problems—supercritical growth and domain geometry, research report, Utah State University, 1991.Google Scholar
  29. [29]
    J. Toland,On positive solutions of −Δu=F(x, u) Math. Zeit.,182 (1983), pp. 351–357.zbMATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    H. Whyburn,Topological Analysis,Princeton Univ. Press., Princeton, 1958.zbMATHGoogle Scholar
  31. [31]
    H. Zou,Slow decay and the Harnack inequality for positive solutions of Δu+u p=0in R n, Diff. Integral. Eqns.,8 (1995), pp. 1355–1368.zbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pure ed Applicata 2000

Authors and Affiliations

  • E. N. Dancer
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of SydneyAustralia

Personalised recommendations