Annali di Matematica Pura ed Applicata

, Volume 178, Issue 1, pp 225–233 | Cite as

Infinitely many turning points for some supercritical problems

  • E. N. Dancer


Dirichlet Boundary Condition Bifurcation Point Critical Group Morse Index Radial Solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Amann,Multiple fixed points of asymptotically linear maps, J. Funct. Anal.,17 (1974), pp. 174–213.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. BahriP. L. Lions,Solutions of superlinear elliptic equations and their indices, Comm. Pure Appl. Math.,45 (1992), pp. 1205–1215.MATHMathSciNetGoogle Scholar
  3. [3]
    M. F. Bidaut-VeronL. Veron,Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Inv. Math.,106 (1991), pp. 489–539.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. BuddJ. Norbury,Semilinear elliptic equations and supercritical growth, J. Diff. Eqns.,68 (1987), pp. 169–197.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    B. BuffoniE. N. DancerJ. Toland,Sur les ondes de Stokes et une conjecture de Levi-Civita, C. R. Acad. Sci. Paris,326 (1998), pp. 1265–1268.MATHMathSciNetGoogle Scholar
  6. [6]
    B. Buffoni—E. N. Dancer—J. Toland,The subharmonic bifurcation of Stokes Waves, to appear.Google Scholar
  7. [7]
    K. C. Chang,Infinite dimensional Morse theory and multiple solution problems, Birkauser, Boston, 1993.MATHGoogle Scholar
  8. [8]
    Wenxiong ChenCongming Li,Classification of solutions of some nonlinear elliptic equations, Duke Math. J.,63 (1991), pp. 615–622.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. CrandallP. H. Rabinowitz,Bifurcation from simple eigenvalues, J. Funct. Anal.,8 (1971), pp. 321–340.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. N. Dancer,Some near critical problems, in preparation.Google Scholar
  11. [11]
    E. N. Dancer,Global structure of the solution set of nonlinear real analytic eigenvalue problems, Proc. London Math. Soc.,26 (1973), pp. 359–384.MATHMathSciNetGoogle Scholar
  12. [12]
    E. N. Dancer,On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Diff. Eqns.,37 (1980), pp. 404–437.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    E. N. Dancer,On the number of positive solutions of some weakly nonlinear elliptic equations when a parameter is large, Proc. London Math. Soc.,53 (1986), 429–452.MATHMathSciNetGoogle Scholar
  14. [14]
    E. N. Dancer,Some notes on the method of moving planes, Bull. Austral. Math. Soc.,46 (1992), pp. 425–434.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    E. N. Dancer,Global breaking of symmetry of positive solutions on two-dimensional annuli, Diff. Integral. Eqns.,5 (1992), pp. 903–914.MATHMathSciNetGoogle Scholar
  16. [16]
    E. N. Dancer,Counterexamples to some conjectures on the number of solutions of nonlinear elliptic equations, Math. Ann.,272 (1985), pp. 421–440.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    E. N. Dancer,On the number of positive solutions of some weakly nonlinear equations on annular regions, Math. Zeit.,206 (1991), pp. 551–562.MATHMathSciNetGoogle Scholar
  18. [18]
    E. N. Dancer—Kewei Zhang,Uniqueness of solutions for some elliptic equations and systems in nearly star shaped domains, to appear in Nonlinear Analysis TMA.Google Scholar
  19. [19]
    N. DunfordJ. Schwartz Linear Operators, vol. II, Interscience, New York, 1963.MATHGoogle Scholar
  20. [20]
    N. GhoussoubC. Gui,On a conjecture of De Giorgi and some related problems, Math. Ann.,311 (1998), pp. 481–491.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    B. GidasW. M. NiL. Nirenberg,Symmetry and related properties by the maximum principle, Comm. Math. Phys.,68 (1979), pp. 209–243.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. JosephT. Lungren,Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal.,49 (1973), pp. 241–269.MATHGoogle Scholar
  23. [23]
    W. M. NiR. Nussbaum,Uniqueness and nonuniqueness of positive radial solutions of Δu+f(r,u)=0 Comm. Pure App. Math.,38 (1985), pp. 67–108.MATHMathSciNetGoogle Scholar
  24. [24]
    P. H. Rabinowitz,Some global results for nonlinear eigenvalue problems, J. Funct. Anal.,7 (1971), pp. 487–513.MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    B. Rynne,The structure of Rabinowitz global continua for generic quasilinear elliptic equations, Nonlinear Analysis,32 (1998), pp. 167–181.MATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    K. Rybakowski The homotopy index and partial differential equations, Springer Verlag, Berlin, 1987.MATHGoogle Scholar
  27. [27]
    J. SautR. Teman,Generic properties of nonlinear boundary value problems, Comm. Partial. Diff. Eqns.,4 (1979), pp. 293–319.MATHGoogle Scholar
  28. [28]
    R. Schaaf,Uniqueness for semilinear elliptic problems—supercritical growth and domain geometry, research report, Utah State University, 1991.Google Scholar
  29. [29]
    J. Toland,On positive solutions of −Δu=F(x, u) Math. Zeit.,182 (1983), pp. 351–357.MATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    H. Whyburn,Topological Analysis,Princeton Univ. Press., Princeton, 1958.MATHGoogle Scholar
  31. [31]
    H. Zou,Slow decay and the Harnack inequality for positive solutions of Δu+u p=0in R n, Diff. Integral. Eqns.,8 (1995), pp. 1355–1368.MATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pure ed Applicata 2000

Authors and Affiliations

  • E. N. Dancer
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of SydneyAustralia

Personalised recommendations