Annali di Matematica Pura ed Applicata

, Volume 178, Issue 1, pp 195–224 | Cite as

Continuous solutions for a degenerate free boundary problem

  • José Miguel Urbano


We prove existence of continuous solutions for
$$\partial _t [\gamma \left( \theta \right)] - div(\left| {\nabla \theta } \right|^{p - 2} \nabla \theta ) \ni 0, p > 2$$
, where γ is a maximal monotone graph, by showing equicontinuity of a sequence of approximate solutions. Relations of this type are models for certain free boundary problems like the Stefan problem with nonlinear diffusion.

19991 Mathematics Subject Classification

35D10 35K65 35R35 


  1. [1]
    L. A. CaffarelliL. C. Evans,Continuity of the temperature in the two phase Stefan problem. Arch. Ration. Mech. Anal.,81 (1983), pp. 199–220.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. DeGiorgi,Sulla differenziabilitá e l'analiticitá delle, estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., Ser. 3,3 (1957), pp. 25–43.MathSciNetGoogle Scholar
  3. [3]
    E. DiBenedetto,Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl. (IV),130 (1982), pp. 131–176.MathSciNetCrossRefGoogle Scholar
  4. [4]
    E. DiBenedetto,Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J.,32, 1 (1983), pp. 83–118.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. DiBenedetto,A boundary modulus of continuity for a class of singular parabolic equations, J. Differ. Equations,63 (1986), pp. 418–447.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    E. DiBenedetto,Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.zbMATHGoogle Scholar
  7. [7]
    S. Kamenomostkaya,On the Stefan problem (in Russian), Naučnye Dokl. Vysšei Školy,1 (1958), pp. 60–62; Mat. Sb.,53 (95) (1961), pp. 489–514.Google Scholar
  8. [8]
    O. Ladyzenskaja—V. Solonnikov—N. Ural'ceva,Linear and Quasi-linear Equations of Parabolic Type, A.M.S. Transl. Monog. 23, Providence, R.I., 1968.Google Scholar
  9. [9]
    J. Moser,A new proof of DeGiorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math.,13 (1960), pp. 457–468.zbMATHMathSciNetGoogle Scholar
  10. [10]
    J. F. Rodrigues,Variational methods in the Stefan problem, in: Phase Transitions and Hysteresis (A. Visintin, Ed.), pp. 147–212, Lect. Notes Math.1584, Springer-Verlag, Berlin, 1994.Google Scholar
  11. [11]
    J. M. Urbano,A free boundary problem with convection for the p-Laplacian, Rend. Mat. Appl. (VII),17 (1997), pp. 1–19.zbMATHMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pure ed Applicata 2000

Authors and Affiliations

  • José Miguel Urbano
    • 1
  1. 1.Departamento de Matemática da Universidade de CoimbraCoimbraPortugal

Personalised recommendations