Advertisement

Annali di Matematica Pura ed Applicata

, Volume 178, Issue 1, pp 1–31 | Cite as

Scalar products on clifford modules and pseudo-H-type lie algebras

  • Paolo Ciatti
Article

Abstract

In 1980 A. Kaplan introduced the so called generalised Heisenberg algebras, which are two step nilpotent algebras endowed with an inner product satisfying a compatibility condition with the Lie algebra structure. In this paper we generalize the definition of A. Kaplan to the case of a nonpositive definite scalar product. In the non-positive definite case the proof of the existence and the classification raise entirely new problems. The natural setting to solve them is that of the theory of Clifford modules.

Keywords

Scalar Product Quaternionic Structure Clifford Algebra Real Vector Space Irreducible Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BTV]Berndt J.—Tricerri F.—Vanhecke L.,Geometry of Generalized heisenberg Groups and their Damek-Ricci Harmonic Extensions (to appear).Google Scholar
  2. [BT]Budinich P.Trautman A. The Spinorial Chessboard, Springer-Verlag, New York (1988).Google Scholar
  3. [CDKR1]Cowling M.Dooley A.Korányi A.Ricci F.,H-type groups and Iwasawa decompositions, Adv. Math.,87 (1991), pp. 1–41.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [CDKR2]Cowling M.—Dooley A.—Korányi A.—Ricci F.,An approach to symmetric spaces of rank one via groups of Heisenberg type (to appear).Google Scholar
  5. [Ct]Ciatti P.,Solvable extensions of pseudo-H-type algebras, Boll. UMI (7)11-B (1997), pp. 681–696.MathSciNetGoogle Scholar
  6. [DR]Damek E.Ricci F.,Harmonic analysis on solvable extension of H-type groups, J. Geom. Anal.,2 (1992), pp. 213–248.zbMATHMathSciNetGoogle Scholar
  7. [DSS]Delanghe R.Sommen FSouček V.,Clifford algebra and spinor valued functions, Kluwer Academic Publishers, Dordrecht-Boston-London (1992).zbMATHGoogle Scholar
  8. [Hu]Husemoller D. Fibre Bundles, Springer-Verlag, New York-Heidelberg-Berlin (1974).Google Scholar
  9. [Ka1]Kaplan A.,Fundamental solutions for a class of hypoelliptic PDE generated by compositions of quadratic forms. Trans. Amer. Math. Soc.258 (1980), pp. 147–153.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [Ka2]Kaplan A.,Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata,11 (1981), pp. 127–136.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [Ko]Korányi A.,Geometric properties of Heisenberg-type groups, Adv. Math.,56 (1985), pp. 28–38.zbMATHCrossRefGoogle Scholar
  12. [La]Lam T. Y.,The algebraic theory of quadratic forms, W. A. Benjamin Inc. Reading, Massachuset (1973).zbMATHGoogle Scholar
  13. [O'N]O'Neill B.,Semi-Riemannian geometry, Academic Press, New York (1983).zbMATHGoogle Scholar
  14. [R]Ricci F.,Commutative algebras of invariant functions on groups of Heisenberg type, J. London Math. Soc. (2);32 (1985), pp. 265–271.zbMATHMathSciNetGoogle Scholar
  15. [Rm1]Riehm O.,The automorphism group of a composition of quadratic forms, Trans. amer. Math. Soc.269, (1982), pp. 403–414.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [Rm2]Riehm C.,Explicit spin representations and lie algebras of heisenberg type, J. London Math. Soc.,29 (1984), pp. 49–62.zbMATHMathSciNetGoogle Scholar
  17. [S]Szabó, Z.,The Lichnerowicz conjecture on harmonic manifolds, J. Diff. Geom.,31, (1990), pp. 1–28.zbMATHGoogle Scholar
  18. [TV]Tricerri F.Vanhecke L.,Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lecture Note Series, Cambridge University Press, Cambridge (1983).zbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pure ed Applicata 2000

Authors and Affiliations

  • Paolo Ciatti
    • 1
  1. 1.Dipartimento di MatematicaPolitecnico di TorinoTorino

Personalised recommendations