Advertisement

Chromatographia

, Volume 45, Issue 1, pp 173–182 | Cite as

Identification of phenyl-substituted polycyclic aromatic compounds in ring furnace gases using GC-MS and GC-AED

  • R. Meyer zu Reckendorf
Originals

Summary

The ring furnace baking process is an intermediate step in the production of graphite electrodes. In this process coal tar pitch is pyrolized to form amorphous carbon and volatile aromatic and polycyclic aromatic compounds (PACs). These gaseous ring furnace emissions were analysed by GC-MS and GC-AED. As a result of the pyrolytic reactions taking place, several phenyl-substituted PACs are generated, which were identified by their chromatographic retention indices and mass spectra. Pure reference compounds were analysed for verification if available. A number of phenyl-PACs are reported to be present in coal tar-related material, including phenylpyridines and phenyldibenzofurans previously unreported. A formation scheme for phenyl-dibenzofurans on the basis of a radical mechanism is proposed.

Key Words

Gas chromatography Mass selective detector Atomic emission detector Furnace gases Phenyl-substituted PAC Coal tar pitch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Grimmer, J. Jacob, G. Dettbarn, K.-W. Naujack, Fres. Z. Anal. Chem.322, 595 (1985).CrossRefGoogle Scholar
  2. [2]
    A. Bjorseth, G. Eklund, Anal. Chim. Acta105, 119 (1979).CrossRefGoogle Scholar
  3. [3]
    C. G. Blanco, J. Blanco, P. Bernad, M. D. Guillén, J. Chromatogr.539, 157 (1991).CrossRefGoogle Scholar
  4. [4]
    S. A. Wise, B. A. Benner, G. D. Byrd, S. N. Chesler, R. E. Rebbert, M. M. Schautz, Anal. Chem.60, 887 (1988).CrossRefGoogle Scholar
  5. [5]
    P. Burchill, A. A. Herod, E. Pritchard, J. Chromatogr.242, 51 (1982).CrossRefGoogle Scholar
  6. [6]
    H. Borwitzky, G. Schomburg, J. Chromatogr.170, 99 (1979).CrossRefGoogle Scholar
  7. [7]
    J. C. Lauer, D. H. V. Hernandez, D. Cagniant, Fuel67, 1273 (1988).CrossRefGoogle Scholar
  8. [8]
    P. J. Kirton, P. T. Crisp, Fuel69, 633 (1990).CrossRefGoogle Scholar
  9. [9]
    M. Novotny, J. W. Strand, S. L. Smith, D. Wiesler, F. J. Schwende, Fuel60, 213 (1981).CrossRefGoogle Scholar
  10. [10]
    S. Slupek, J. A. Kozinski, Fuel68, 877 (1989).CrossRefGoogle Scholar
  11. [11]
    P. Lucas, A. Marchand, Carbon28, 207 (1990).CrossRefGoogle Scholar
  12. [12]
    G. Collin, H. Höke, in “Ullmann's Encyclopedia of Industrial Chemistry”, Vol.A26, VCH, Weinheim, 1995, p.91.Google Scholar
  13. [13]
    O. J. Vohler, F. von Sturm, E. Wege, in “Encyclopedia of Applied Physics”, Vol.3, VCH, Weinheim, 1992, p.21.Google Scholar
  14. [14]
    E. Fitzer, K. Müller, W. Schäfer, in P. L. Walker, (Ed.), “Chemistry and Physics of Carbon”, Vol.7, Marcel Dekker, New York, 1971, p.237.Google Scholar
  15. [15]
    J. C. Lauer, D. H. V. Hernandez, D. Cagniant, Fuel67, 1446 (1988).CrossRefGoogle Scholar
  16. [16]
    O. J. Vohler, F. von Sturm, E. Wege, H. von Kienle, M. Voll, P. Kleinschmit, in “Ullmann's Encyclopedia of Industrial Chemistry”, Vol.A5, VCH, Weinheim, 1986, p.95.Google Scholar
  17. [17]
    D. L. Vassilaros, R. C. Kong, D. W. Later, M. L. Lee, J. Chromatogr.252, 1 (1982).CrossRefGoogle Scholar
  18. [18]
    I. C. Lewis, Carbon20, 519 (1982).CrossRefGoogle Scholar
  19. [19]
    E. A. Blekkan, R. Myrstad, O. Olsvik, O. A. Rokstad, Carbon30, 665 (1992).CrossRefGoogle Scholar
  20. [20]
    I. C. Lewis, L. S. Singer, inP. L. Walker, (Ed.), “Chemistry and Physics of Carbon”, Vol.17, Marcel Dekker, New York, 1981, p.1.Google Scholar
  21. [21]
    R. Meyer zu Reckendorf, private report, 1990.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1997

Authors and Affiliations

  • R. Meyer zu Reckendorf
    • 1
  1. 1.SGL Carbon AGMeitingenGermany

Personalised recommendations