Plant Molecular Biology

, Volume 4, Issue 1, pp 39–54 | Cite as

Multiple transcripts for higher plantrbcL andatpB genes and localization of the transcription initiation site of therbcL gene

  • John E. Mullet
  • Emil M. OrozcoJr.
  • Nam-Hai Chua


We have compared therbcL andatpB transcription units from spinach, maize, and pea. In most cases multiple transcripts were found for a given chloroplast gene. The 5′ termini of these transcripts were determined by S1 nuclease protection and primer extension analyses. TherbcL transcripts have 5′ termini 178–179 and 64 nucleotides (spinach), 300 and 59–63 nucleotides (maize), and 178 and 65 nucleotides (pea) upstream from their respective protein coding regions. TheatpB transcripts have 5′ termini (453–454, 272–273, 179, and 99 nucleotides (spinach), 298–302 nucleotides (maize), and 351–355 nucleotides (pea) upstream from their respective protein coding regions. The intergenic distance between therbcL andatpB genes is relatively constant (152 to 157 base pairs) among the three chloroplast genomes. In spinach, maize, and pea, the 80 base pairs surrounding the 5′ end of therbcL gene (±40 base pairs) have 85% sequence homology. Similarly, the 60 base pairs preceding theatpB gene have 48% sequence homology. Both genes have ‘−10’ and ‘−35’ regions that resemble the prokaryotic consensus promoter sequence. The larger, but not smaller,rbcL transcripts from spinach and pea can be labeled with alpha-32P-GTP by guanylyltransferase. These data suggest that DNA sequences 178–179 (spinach), 300 (maize), and 178 (pea) base pairs before therbcL protein coding regions represent sites of transcription initiation. The sequences 59–65 base pairs before therbcL protein coding regions may correspond to sites of RNA cleavage.


atpchloroplast gene structure mRNA heterogeneity rbcsequence homologies transcription initiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barraclough R, Ellis RJ: The biosynthesis of ribulose bisphosphate carboxylase. Uncoupling of the synthesis of the large and small subunits in isolated soybean leaf cells. Eur J Biochem 94:165–177, 1979.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartlett SG, Grossman AR, Chua N-H:In vitro synthesis and uptake of cytoplasmically-synthesized chloroplast proteins. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in Chloroplast Molecular Biology. Elsevier Biomedical Press, Amsterdam, The Netherlands, 1982, pp 1081–1091.Google Scholar
  3. 3.
    Boege F, Westhoff P, Zimmermann K, Zetsche K: Regulation of the synthesis of ribulose-1,5-bisphosphate carboxylase and its subunits in the flagellateChlorogonium elongatum. I. The effect of light and acetate on the synthesis and the degradation of the enzyme. Eur J Biochem 113:581–586, 1981.PubMedCrossRefGoogle Scholar
  4. 4.
    Broglie R, Coruzzi G, Keith B, Chua N-H: Molecular biology of C4 photosynthesis inZea mays: differential localization of proteins and mRNAs in the two leaf cell types. Plant Mol Biol 3:431–444, 1984.CrossRefGoogle Scholar
  5. 5.
    Christianson T, Edwards JC, Mueller DM, Rabinowitz M: Identification of a single transcriptional initiation site for the glutamic tRNA and COB genes in yeast mitochondria. Proc Nat Acad Sci USA 80:5564–5568, 1983.PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen SN, Miller CA: Non-chromosomal antibiotic resistance in bacteria. II. Molecular nature of R-factors isolated fromProteus mirabilis andEscherichia coli. J Mol Biol 50:671–687, 1970.PubMedCrossRefGoogle Scholar
  7. 7.
    Erion JL, Tarnowski J, Peacock S, Caldwell P, Redfield B, Brot N, Weissbach H: Synthesis of the large subunit of ribulose-1,5-bisphosphate carboxylase in anin vitro partially definedE. coli system. Plant Mol Biol 2:279–290, 1983.CrossRefGoogle Scholar
  8. 8.
    Feierabend J, Wildner G: Formation of the small subunit in the absence of the large subunit of ribulose-1,5-bisphosphate carboxylase in 70S ribosome-deficient rye leaves. Arch Biochem Biophys 186:183–291, 1978.CrossRefGoogle Scholar
  9. 9.
    Feierabend J, deBoer J: Comparative analysis of the action of cytokinin and light on the formation of ribulosebisphosphate carboxylase and plastid biogenesis. Planta 142:75–82, 1978.CrossRefGoogle Scholar
  10. 10.
    Fluhr R, Fromm H, Edelman M: Clone bank ofNicotiana tabacum chloroplast DNA: mapping of the alpha, beta and epsilon subunits of the ATPase coupling factor, the large subunit of ribulose bisphosphate carboxylase, and the 32-kDal membrane protein. Gene 25:271–280, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Frankfort HM, Robertson HD: Ribonucleases. In: Linn SM, Roberts RJ (eds) Nucleases. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982, pp 359–366.Google Scholar
  12. 12.
    Hallick RB, Richards OC, Gray PW: Isolation of intact, superhelical chloroplast DNA fromEuglena gracilis. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in Chloroplast Molecular Biology. Elsevier Biomedical Press, Amsterdam-New York-Oxford, 1982, pp 281–293.Google Scholar
  13. 13.
    Hallick RB, Bottomley W: Proposals for the naming of chloroplast genes. Plant Mol Biol Reporter 1:38–43, 1983.CrossRefGoogle Scholar
  14. 14.
    Hansen U, Tenen DG, Livingston DM, Sharp PA: Tantigen repression of SV40 early transcription from two promoters. Cell 27:603–612, 1981.PubMedCrossRefGoogle Scholar
  15. 15.
    Huber SC, Hall TC, Edwards GE: Differential localization of fraction I protein between chloroplast types. Plant Physiol 57:730–733, 1976.PubMedGoogle Scholar
  16. 16.
    Iwanij V, Chua N-H, Siekevitz P: Synthesis and turnover of ribulose bisphosphate carboxylase and of its subunits during the cell cycle ofChlamydomonas reinhardtii. J Cell Biol 64:572–585, 1975.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson WC, Moran CP, Losick R: Two polymerase sigma factors fromBacillus subtilis discriminate between overlapping promoters for a developmentally regulated gene. Nature 302:800–804, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Kawashima N, Wildman SG: Fraction I protein. Ann Rev Plant Physiol 21:325–358, 1970.CrossRefGoogle Scholar
  19. 19.
    Kirchanski SJ, Park RB: Comparative studies of the thylakoid proteins of mesophyll and bundle-sheath plastids ofZea mays. Plant Physiol 58:345–349, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Krebbers ET, Larrinua IM, McIntosh L, Bogorad L: The maize chloroplast genes for the beta and epsilon subunits of the photosynthetic coupling factor CF1 are fused. Nuc Acids Res 10:4985–5002, 1982.Google Scholar
  21. 21.
    Kung S: Tobacco fraction 1 protein: A unique genetic marker. Science 191:429–434, 1976.PubMedGoogle Scholar
  22. 22.
    Lee DC, Luse DS: Mapping the 5′ ends ofin vitro synthesized RNAs with reverse transcriptase. Focus 4:1–3, 1982.Google Scholar
  23. 23.
    Levens D, Ticho B, Ackerman E, Rabinowitz M: Transcription initiation and 5′ termini of yeast mitochondrial RNA. J Biol Chem 256:5226–5232, 1981.PubMedGoogle Scholar
  24. 24.
    Link G, Coen DM, Bogorad L: Differential expression of the gene for the large subunit of ribulose bisphosphate carboxylase in maize leaf cell types. Cell 15:725–731, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Lizardi PM: Schleicher and Schuell publication #364, 1983.Google Scholar
  26. 26.
    Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982.Google Scholar
  27. 27.
    Maxam AM, Gilbert W: Sequencing end-labeled DNA with base-specific chemical cleavages. In: Grossman L, Moldave K (eds) Methods in Enzymology, Vol 65. Academic Press, New York, 1980, pp 499–560.Google Scholar
  28. 28.
    McIntosh L, Poulsen C, Bogorad L: Chloroplast gene sequence for the large subunit of ribulose bisphosphate carboxylase of maize. Nature 288:556–560, 1980.CrossRefGoogle Scholar
  29. 29.
    Moss B: Utilization of the guanylyltransferase and methyltransferases of vaccinia virus to modify and identify the 5′-terminals of heterologous RNA species. Biochem Biophys Res Comm 74:374–383, 1977.PubMedCrossRefGoogle Scholar
  30. 30.
    Musso RE, DiLauro R, Adhya S, deCrombrugghe B: Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Cell 12:847–854, 1977.PubMedCrossRefGoogle Scholar
  31. 31.
    Orozco EM Jr, Gray PW, Hallick RB:Euglena gracilis chloroplast ribosomal RNA transcription units. I. The location of transfer RNA, 5S, 16S, and 23S ribosomal RNA genes. J Biol Chem 255:10991–10996, 1980.PubMedGoogle Scholar
  32. 32.
    Palmer JD, Edwards H, Jorgensen RA, Thompson WF: Novel evolutionary variation in transcription and location of two chloroplast genes. Nuc Acids Res 10:6819–6832, 1982.Google Scholar
  33. 33.
    Poulsen C: Two mRNA species by 258 nucleotides at the 5′ end are formed from the barley chloroplastrbcL gene. Carlsberg Res Comm 49:89–104.Google Scholar
  34. 34.
    Rosenberg M, Court D: Regulatory sequences involved in the promotion and termination of RNA transcription. Ann Rev Genet 13:319–353, 1979.PubMedCrossRefGoogle Scholar
  35. 35.
    Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain terminating inhibitors. Proc Nat Acad Sci USA 74:5463–5476, 1977.PubMedCrossRefGoogle Scholar
  36. 36.
    Sasaki Y, Ishiye M, Sakihama T, Kamikubo T: Light-induced increase of mRNA activity coding for the small subunit of ribulose-1,5-bisphosphate carboxylase. J Biol Chem 256:2315–2320, 1981.PubMedGoogle Scholar
  37. 37.
    Shenk T: Transcriptional control regions: nucleotide sequence requirements for initiation by RNA polymerase II and III. In: Shatkin AJ (ed) Initiation Signals in Viral Gene Expression. Springer Verlag, Berlin-Heidelberg-New York, 1981, pp 25–46.Google Scholar
  38. 38.
    Shinozaki K, Sugiura M: Sequence of the intercistronic region between the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and the coupling factor beta subunit gene. Nuc Acids Res 10:4923–4934, 1982.Google Scholar
  39. 39.
    Shinozaki K, Sugiura M: The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase. Gene 20:91–102, 1982.PubMedCrossRefGoogle Scholar
  40. 40.
    Shinozaki K, Sasaki Y, Sakihama T, Kamikabo T: Coordinate light-induction of two mRNAs, encoded in nuclei and chloroplasts, of ribulose-1,5-bisphosphate carboxylase/oxygenase. FEBS Lett 144:73–76, 1982.PubMedCrossRefGoogle Scholar
  41. 41.
    Shinozaki K, Deno H, Kato A, Sugiura M: Overlap and cotranscription of the genes for the beta and epsilon subunits of tobacco chloroplast ATPase. Gene 24:147–155, 1983.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith SM, Ellis RJ: Light-stimulated accumulation of transcripts of nuclear and chloroplast genes for ribulose bisphosphate carboxylase. J Mol Appl Genet 1:127–137, 1981.PubMedGoogle Scholar
  43. 43.
    Sollner-Webb B, Reeder RH: The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription inX. laevis. Cell 18:485–499.Google Scholar
  44. 44.
    Tjian R: Regulation of viral transcription and DNA replication by the SV40 large T antigen. In: Shatkin AJ (ed) Initiation Signals in Viral Gene Expression. Springer-Verlag, Berlin-Heidelberg-New York, 1981, pp 5–24.Google Scholar
  45. 45.
    Tobin E, Suttie JL: Light effects on the synthesis of ribulose-1,5-bisphosphate carboxylase inLemna gibba. Plant Physiol 65:641–647, 1980.PubMedGoogle Scholar
  46. 46.
    Viera J, Messing J: The pUC plasmids, an m13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268, 1982.CrossRefGoogle Scholar
  47. 47.
    Weaver RF, Weissmann C: Mapping of RNA by a modification of the Berk-Sharp procedure: the 5′ termini of the 15S beta-globin mRNA precursor and mature 10S beta-globin mRNA have identical map coordinates. Nuc Acids Res 7:1175–1193, 1979.Google Scholar
  48. 48.
    Whitfeld PR, Bottomley W: Organization and structure of chloroplast genes. Ann Rev Plant Physiol 34:279–310, 1983.CrossRefGoogle Scholar
  49. 49.
    Zurawski G, Perrot B, Bottomley W, Whitfeld PR: The structure of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase form spinach chloroplast DNA. Nuc Acids Res 9:3251–3270, 1981.Google Scholar
  50. 50.
    Zuraswki G, Bottomley W, Whitfeld PR: Structure of the genes for the beta and epsilon subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc Nat Acad Sci USA 79:6260–6264, 1982.CrossRefGoogle Scholar
  51. 51.
    Zurawski G, Clegg MT, Brown AHD: The nature of nucleotide sequence divergence between barley and maize chloroplast DNA. Genetics 106:735–749, 1984.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1985

Authors and Affiliations

  • John E. Mullet
    • 1
  • Emil M. OrozcoJr.
    • 1
  • Nam-Hai Chua
    • 1
  1. 1.Laboratory of Plant Molecular BiologyThe Rockefeller UniversityNew YorkUSA

Personalised recommendations