Well-posedness of a semilinear heat equation with weak initial data

  • Jiahong Wu


This article mainly consists of two parts. In the first part the initial value problem (IVP) of the semilinear heat equation
$$\begin{gathered} \partial _t u - \Delta u = \left| u \right|^{k - 1} u, on \mathbb{R}^n x(0,\infty ), k \geqslant 2 \hfill \\ u(x,0) = u_0 (x), x \in \mathbb{R}^n \hfill \\ \end{gathered} $$
with initial data in\(\dot L_{r,p} \) is studied. We prove the well-posedness when
$$1< p< \infty , \frac{2}{{k(k - 1)}}< \frac{n}{p} \leqslant \frac{2}{{k - 1}}, and r =< \frac{n}{p} - \frac{2}{{k - 1}}( \leqslant 0)$$
and construct non-unique solutions for
$$1< p< \frac{{n(k - 1)}}{2}< k + 1, and r< \frac{n}{p} - \frac{2}{{k - 1}}.$$
In the second part the well-posedness of the avove IVP for k=2 with μ0ɛHs(ℝn) is proved if
$$ - 1< s, for n = 1, \frac{n}{2} - 2< s, for n \geqslant 2.$$
and this result is then extended for more general nonlinear terms and initial data. By taking special values of r, p, s, and u0, these well-posedness results reduce to some of those previously obtained by other authors [4, 14].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baras, P. and Pierre, M. (1984). Problems paraboliques semilineaires avec donnees measures,Applicable Analysis,18, 111–149.MATHMathSciNetGoogle Scholar
  2. [2]
    Bergh, J. and Löfström, J. (1976).Interpolation Spaces, Springer-Verlag, Berlin.MATHGoogle Scholar
  3. [3]
    Bourgain, J.Nonlinear Schrödinger Equations, Lecture notes.Google Scholar
  4. [4]
    Brezis, H. and Friedman, A. (1983). Nonlinear parabolic equations involving measures as initial data,J. Math. Pures et Appl.,62, 73–97.MATHMathSciNetGoogle Scholar
  5. [5]
    Dix, D.B. (1991). Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers' equations,J. Differential Equations,90, 238–287.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Dix, D.B. (1996). Nonuniqueness and uniqueness in the initial value problem for Burgers' equation,SIAM Math. Anal.,27, 708–724.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Haraux, A. and Weissler, F.B. (1982). Non-uniqueness for a semilinear initial value problem,Indiana Univ. Math. J.,31, 167–189.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Kato, T. (1984). StrongL p-solutions of the Navier-Stokes equation in ℝm with applications to weak solutions,Math. Z.,187, 471–480.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Kato, T. (1994). The Navier-Stokes solutions for an incompressible fluid in ℝ2 with measure as the initial vorticity,Diff. Integral Equ.,7, 949–966.MATHGoogle Scholar
  10. [10]
    Kato, T. and Fujita, H. (1962). On the nonstationary Navier-Stokes equations,Rend. Sem. Mat. Univ. Padova,32, 243–260.MATHMathSciNetGoogle Scholar
  11. [11]
    Kato, T. and Ponce, G. (1994). The Navier-Stokes equations with weak initial data,Int. Math. Res. Not.,10, 435–444.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Kato, T. and Ponce, G. (1986). Well-posedness of the Euler and the Navier-Stokes equations in the Lebesgue spacesL sp (ℝ2),Rev. Mat. Iber.,2, 73–88.MathSciNetGoogle Scholar
  13. [13]
    Kozono, H. and Yamazaki, M. (1994). Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data,Comm. in PDE,19, 959–1014.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Weissler, F.B. (1981). Existence and nonexistence of global solutions for a semilinear heat equation,Israel J. Math.,38, 29–40.MATHMathSciNetGoogle Scholar
  15. [15]
    Weissler, F.B. (1980). Local existence and nonexistence for semilinear parabolic equations inL p Indiana Univ. Math. J.,29, 79–102.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1998

Authors and Affiliations

  • Jiahong Wu
    • 1
  1. 1.University of Texas at AustinAustin

Personalised recommendations