Chromatographia

, Volume 50, Issue 11–12, pp 654–660 | Cite as

Characterization and evaluation of magnesia-zirconia supports for normal-phase liquid chromatography

  • Qing-He Zhang
  • Yu-Qi Feng
  • Shi-Lu Da
Originals

Summary

A new packing based on a magnesia-zirconia composite was synthesized as rigid microparticles (4–6 μm) by a sol-gel process. The magnesia-zirconia composite exhibits a larger specific surface area, larger specific pore volume, better pore connectivity and more uniform pore size distribution than pure zirconia prepared under the same conditions. The chromatographic performance of magnesia-zirconia and zirconia packings in normalphase HPLC was evaluated using binary mobile phases (dichloromethane/cyclohexane, chloroform/cyclohexane and isopropanol/cyclohexane) and acidic, neutral and basic compounds as solutes. The efficiency of columns packed with the magnesia-zirconia composite was higher than that of zirconia.

Key Words

Column liquid chromatography Magnesia-zirconia stationary phases Zirconia stationary phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Billiet, C. Laurent, L. De Galan, Trends Anal. Chem.4, 100 (1985).CrossRefGoogle Scholar
  2. [2]
    U. Trüdinger, G. Müller, K. Unger, J. Chromatogr.535, 111 (1990).CrossRefGoogle Scholar
  3. [3]
    J. Nawrocki, M. P. Rigney, A. McCormick, P. W. Carr, J. Chromatogr.657, 229 (1993).CrossRefGoogle Scholar
  4. [4]
    M. Kawahara, H. Nakamura, T. Nakajima, Anal. Sci.4, 671 (1988).Google Scholar
  5. [5]
    M. Kawahara, H. Nakamura, T. Nakajima, Anal. Sci.5, 485 (1989).Google Scholar
  6. [6]
    M. Grün, A. Kurganov, S. Schacht, F. Schüth, K. Unger, J. Chromatogr. A740, 1 (1996).CrossRefGoogle Scholar
  7. [7]
    A. Kurganov, U. Trüdinger, T. Isaeva, K. Unger, Chromatographia42, 217 (1996).CrossRefGoogle Scholar
  8. [8]
    J. Yu, Z. E. Rassi, J. Liq. Chromatogr.17, 773 (1994).Google Scholar
  9. [9]
    T. P. Weber, P. W. Carr, Anal. Chem.62, 2620 (1990).CrossRefGoogle Scholar
  10. [10]
    T. P. Weber, P. T. Jackson, P. W. Carr Anal. Chem.67, 3042 (1995).CrossRefGoogle Scholar
  11. [11]
    P. T. Jackson, T. Y. Kim, P. W. Carr, Anal. Chem.69, 5011 (1997).CrossRefGoogle Scholar
  12. [12]
    C. McNeff, Q. H. Zhao, P. W. Carr, J. Chromatogr. A684, 201 (1994).CrossRefGoogle Scholar
  13. [13]
    L. Sun, P. W. Carr, Anal. Chem.67, 3717 (1995).CrossRefGoogle Scholar
  14. [14]
    C. J. Dunlap, P. W. Carr, J. Chromatogr. A746, 199 (1996).CrossRefGoogle Scholar
  15. [15]
    J. W. Li, P. W. Carr, Anal. Chem.69, 2193 (1997).CrossRefGoogle Scholar
  16. [16]
    Y. Hu, P. W. Carr, Anal. Chem.70, 1934 (1998).CrossRefGoogle Scholar
  17. [17]
    J. A. Blackwell, P.W. Carr, J. Chromatogr.549, 59 (1991).CrossRefGoogle Scholar
  18. [18]
    W. A. Schafer, P. W. Carr, J. Chromatogr.587, 149 (1991).CrossRefGoogle Scholar
  19. [19]
    A. M. Clausen, P. W. Carr, Anal. Chem.70, 378 (1998).CrossRefGoogle Scholar
  20. [20]
    Q. -H. Zhang, Y. -Q. Feng, S. -L. Da, Chinese J. Chromatogr.17, 284 (1999).Google Scholar
  21. [21]
    Q. -H. Zhang, Y. -Q. Feng, S. -L. Da, Chinese J. Chromatogr.17, 229 (1999).Google Scholar
  22. [22]
    W. W. Yau, J. J. Kirkland, D. D. Bly, Modern Size Exclusion Liquid Chromatography, John Wiley & Sons, New York, 1979.Google Scholar
  23. [23]
    R. A. Shalliker, G. K. Douglas, J. Liq. Chrom. & Rel. Technol.21, 2413 (1998).Google Scholar
  24. [24]
    C. F. Lorenzano-Porras, P.W. Carr, A.V. McCormick, J. Colloid Interface Sci.164, 1 (1994).CrossRefGoogle Scholar
  25. [25]
    C. F. Lorenzano-Porras, M. J. Annen, M. C. Flicking, P. W. Carr, A. V. McCormick, J. Colloid Interface Sci.170, 299 (1995).CrossRefGoogle Scholar
  26. [26]
    C. J. Dunlap, P.W. Carr, A. V. McCormick, Chromatographia42, 273 (1996).CrossRefGoogle Scholar
  27. [27]
    R. A. Shalliker, G. K. Douglas, J. Liq. Chrom. & Rel. Technol.20, 1651 (1997).Google Scholar
  28. [28]
    R. A. Shalliker, G. K. Douglas, L. Rintoul, P. R. Comino, P. E. Kavanagh, J. Liq. Chrom. & Rel. Technol.20, 1471 (1997).Google Scholar
  29. [29]
    R. A. Shalliker, L. Rintoul, G. K. Douglas, S. C. Russell, J. Mater. Sci.32, 2949 (1997).CrossRefGoogle Scholar
  30. [30]
    Q. -H. Zhang, Y. -Q. Feng, S. -L. Da, Anal. Sci.15, 767 (1999).CrossRefGoogle Scholar
  31. [31]
    H. Kita, N. Henmi, K. Shimazu, H. Hattori, K. Taneba, J. Chem. Soc. Faraday Trans.1, 77, 2451 (1981).Google Scholar
  32. [32]
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem.57, 603 (1985).Google Scholar
  33. [33]
    P. D. L. Mercera, J. G. Van Ommen, E. B. M. Doesburg, A. J. Burggraaf, J. R. H. Ross, Applied Catalysis,57, 127 (1990).CrossRefGoogle Scholar
  34. [34]
    L. R. Snyder, J. J. Kirkland, Introduction to Modern Liquid Chromatography, John Wiley & Sons, Inc., 1979.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • Qing-He Zhang
    • 1
  • Yu-Qi Feng
    • 1
  • Shi-Lu Da
    • 1
  1. 1.Department of ChemistryWuhan UniversityWuhanP.R. China

Personalised recommendations