Advertisement

Russian Chemical Bulletin

, Volume 49, Issue 2, pp 317–320 | Cite as

Gas-chromatographic method of evaluation ofn-alkanol ability for self-association in pure liquid

  • R. V. Golovnya
  • T. E. Kuz'menko
  • A. L. Samusenko
Physical Chemistry

Abstract

The values of the gas-chromatographic indicator reflecting the capacity of analytes for self-association in pure liquids, δT b.p., were estimated for C1–C9 and C11 n-alkanols by capillary gas chromatography on a nonpolar stationary phase under isothermal conditions. The δT b.p. values ofn-alkanols, found as the difference between the boiling points measured directly and those calculated from GC data, are correlated with thermodynamic characteristics of the formation ofn-alkanol associates in pure liquids. Usingn-alkanols as analytes with insignificant temperature increments of the retention indices, it was shown that the δT b.p. values can be determined under conditions used in gas chromatography with temperature programming. In this way a single chromatographic run can be used to compare the capacities for self-association of analytes boiling over a wide temperature range. The C2–C9 n-alkanethiols, which are not associated in neat liquids, have negative δT b.p. values. An interpretation of this finding is proposed.

Key words

capillary gas-chromatography n-alkanols n-alkanethiols retention indices temperature increments gas-chromatographic indicator of self-association of analytes in pure liquids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yu. Nikiforov, I. A. Luk'yanchikova, M. V. Grechukhin, G. A. Al'per, and G. A. Krestov,Zh. Fiz. Khim., 1996,70, 1043 [Russ. J. Phys. Chem., 1996,70 (Engl. Transl.)].Google Scholar
  2. 2.
    Yu. G. Bushuev, T. A. Dubinkina, and V. P. Korolev,Zh. Fiz. Khim., 1997,71, 113 [Russ. J. Phys. Chem., 1997,71, (Engl. Transl.)].Google Scholar
  3. 3.
    M. Haughney, M. Ferrario, and I. R. McDonald,J. Phys. Chem., 1987,91, 4934.CrossRefGoogle Scholar
  4. 4.
    K. Moorthi and I. Nagata,Fluid Phase Equilib., 1990,57, 183.Google Scholar
  5. 5.
    J. Zhao and Y. Hu,Fluid Phase Equilib., 1990,57, 89.CrossRefGoogle Scholar
  6. 6.
    R. V. Golovnya, T. E. Kuz'menko, and I. L. Zhuravleva,Proceedings of the 20th International Symposium on Capillary Chromatography, 1998, May 26–29, Riva del Garda, Italy, CD-ROM, A-12, 1998.Google Scholar
  7. 7.
    R. V. Golovnya, T. E. Kuz'menko, and I. L. Zhuravleva,Izv. Akad. Nauk, Ser. Khim., 1999, 730 [Russ. Chem. Bull., 1999,48, 726 (Engl. Transl.)].Google Scholar
  8. 8.
    E. sz. Kovats,Helv. Chim. Acta, 1965,4, 1965.Google Scholar
  9. 9.
    H. Van den Dool and P. Kratz,J. Chromatogr., 1963,11, 463.CrossRefGoogle Scholar
  10. 10.
    V. A. Durov,Zh. Fiz. Khim., 1982,56, 384 [Russ. J. Phys. Chem., 1982,56 (Engl. Transl.)].Google Scholar
  11. 11.
    E. N. Gur'yanova, I. P. Gol'dshtein, and T. I. Perepelkova,Usp. Khim., 1976,45, 1568 [Russ. Chem. Rev., 1976,45 (Engl. Transl.)].Google Scholar
  12. 12.
    V. A. Durov and V. T. Usacheva,Zh. Fiz. Khim., 1982,56, 648 [Russ. J. Phys. Chem., 1982,56 (Engl. Transl.)].Google Scholar
  13. 13.
    V. Brandani,Fluid Phase Equilib., 1983,12, 87.CrossRefGoogle Scholar
  14. 14.
    B. L. Karger,Anal. Chem., 1967,39, 24A.CrossRefGoogle Scholar
  15. 15.
    G. Guiochon and L. Guillemin,Quantitative Gas Chromatography, Elsevier, Amsterdam-New York-Tokyo, 1988.Google Scholar
  16. 16.
    Handbook of Chemistry and Physics, Ed. R. C. Weast 55th ed., CRC Press, Cleveland, Ohio, 1974–1975, 75.Google Scholar
  17. 17.
    A. Heintz, E. Dolch, and R. N. Lichtouthaler,Fluid Phase Equilib., 1986,27, 61.CrossRefGoogle Scholar
  18. 18.
    V. G. Garbuzov, T. A. Misharina, A. F. Aerov, and R. V. Golovnya,Zh. Analit. Khim., 1985,40, 709 [Russ. J. Analyt. Chem., 1985,40 (Engl. Transl.)].Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • R. V. Golovnya
    • 1
  • T. E. Kuz'menko
    • 1
  • A. L. Samusenko
    • 1
  1. 1.N. M. Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations