Advertisement

Chromatographia

, Volume 55, Issue 9–10, pp 533–540 | Cite as

Molar mass effects in reversed-phase gradient polymer-elution chromatography of oligomers

  • H. J. A. Philipsen
  • B. Klumperman
  • F. A. M. Leermakers
  • F. P. C. Wubbe
  • A. L. German
Originals Column Liquid Chromatography

Summary

The dependence on molar mass of the retention of oligomers in reversed-phase gradient polymer-elution chromatography (RP GPEC) has been investigated. To this end a variety of oligomer series, including polystyrene (PS) and amorphous polyesters (PE) were chromatographed using different non-solvent-solvent (NS-S) mobile phases and at different temperatures. Sigmoidally shaped curves were usually obtained for plots of amount (%) of S against 1/√ (molar mass) but the exact shape varied from almost linear to very convex. Increasing the temperature led to increased dependence of retention on the molar mass; this can be ascribed to a decrease in Flory-Huggins interaction parameters. Changing the NS-S system substantially affects the shape of the curves, but the effect is different for different oligomer series. From results from isocratic measurements for PS and a PE it was found that the effect of experimental conditions can be ascribed to the relative contributions to retention of both end groups and of the monomer repeat units. Because these contributions are affected to different extents by chromatographic conditions, changing these conditions also affects the shape of the plot of the amount of S against 1/√ (molar mass).

Key Words

Column liquid chromatography Gradient elution Polymers Dependence of retention on molar mass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Teramachi, S.; Hasegawa, A.; Shima, Y.; Akatsuka, M.; Nakajima, M.;Macromolecules 1979,12, 992.CrossRefGoogle Scholar
  2. [2]
    Glöckner, G.Gradient HPLC of Copolymers and Chromatographic Cross-fractionation, Springer, Berlin,1991.Google Scholar
  3. [3]
    Kawai, T.; Teramachi, S.; Tanaka, S.; Maeda, S.Int. J. Polym. Anal. Char. 2000,5, 381.Google Scholar
  4. [4]
    Braun, D.; Henze, I.; Pasch, H.Macromol. Chem. Phys. 1997,198, 3365.CrossRefGoogle Scholar
  5. [5]
    Van der Maeden, F.P.B.; Biemond, M.E.F.; Janssen, P.C.G.M.J. Chromatogr. 1978 149, 539.CrossRefGoogle Scholar
  6. [6]
    Rissler, K.J. Chromatogr. A 2000,871, 243.CrossRefGoogle Scholar
  7. [7]
    Jandera, P.; Holcapek, M.; Theodoridis, G.J. Chromatogr. A,2998,813, 299.CrossRefGoogle Scholar
  8. [8]
    Philipsen, H.J.A.; Klumperman, B.; German, A.L.J. Chromatogr. A 1996,746, 211.CrossRefGoogle Scholar
  9. [9]
    Philipsen, H.J.A.; Klumperman, B.; German, A.L.Proc. Int. GPC Symp., San Diego, September1996, p. 368.Google Scholar
  10. [10]
    Philipsen, H.J.A.; Wubbe, F.P.C.; Klumperman, B.; German, A.L.J. Appl. Polym. Sci. 1999,72, 183.CrossRefGoogle Scholar
  11. [11]
    Philipsen, H.J.A.; Claessens H.A.; Bosman, M.; Klumperman, B.; German, A.L.Chromatographia 1998,48, 623.CrossRefGoogle Scholar
  12. [12]
    Philipsen, H.J.A.; de Cooker, M.R.; Claessens, H.A.; Klumperman, B.; German, A.L.J. Chromatogr. A 1997,761, 147.CrossRefGoogle Scholar
  13. [13]
    Philipsen, H.J.A.; Oestreich, M.; Klumperman, B.; German, A.L.;J. Chromatogr. A 1997,775, 157.CrossRefGoogle Scholar
  14. [14]
    Philipsen, H.J.A.; Claessens H.A.; Lind, H.; Klumperman, B.; German, A.L.,J. Chromatogr. A 1997,790, 101.CrossRefGoogle Scholar
  15. [15]
    Philipsen, H.J.A.; Claessens, H.A.; Jandera, P.; Bosman, M.; Klumperman, B.Chromatographia,2000,55, 325.CrossRefGoogle Scholar
  16. [16]
    Cools, P.J.C.H.; van Herk, A.M.; German A.L.; Staal, W.J.,J. Liq. Chromatogr. 1994,17, 3133.Google Scholar
  17. [17]
    Glöckner, G.,Z. Phys. Chem. 1965,229, 98.Google Scholar
  18. [18]
    Glöckner, G.Chromatographia 1988,25, 854.CrossRefGoogle Scholar
  19. [19]
    Glöckner, G.; Wolf, D.Chromatographia 1992,34, 363.CrossRefGoogle Scholar
  20. [20]
    Schultz, R.; Engelhardt, H.Chromatographia 1990,29, 205.CrossRefGoogle Scholar
  21. [21]
    Leermakers, F.A.M.; Philipsen, H.J.A.; Klumperman, B.,J. Chromatogr. A 2002, accepted for publication.Google Scholar
  22. [22]
    Larmann, J.P.; DeStefano, J.J.; Goldberg, A.P.; Stout, R.W.; Snyder, L.R.; Stadalius, M.A.J. Chromatogr. 1983,255 163.CrossRefGoogle Scholar
  23. [23]
    Jandera, P.Chromatographia 1984,19, 101.Google Scholar
  24. [24]
    Jandera, P.; Colin, H.; Guiochon, G.Anal. Chem. 1982,54, 435.Google Scholar
  25. [25]
    Jandera, P.Chromatographia 1988,26, 417.CrossRefGoogle Scholar
  26. [26]
    Jandera, P.J. Chromatogr. 1988,449, 361.CrossRefGoogle Scholar
  27. [27]
    Flory, P.J.Principles of Polymer Chemistry, Oxford University Press, London,1953.Google Scholar
  28. [28]
    Schoenmakers, P.J.; Billet, H.A.H.; Tijssen, R.; de Galan, L.J. Chromatogr. 1978,149, 519.CrossRefGoogle Scholar
  29. [29]
    Schoenmakers, P.J.; Billet, H.A.H.; de Galan, L.J. Chromatogr. 1979,185, 179.CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2002

Authors and Affiliations

  • H. J. A. Philipsen
    • 1
  • B. Klumperman
    • 2
  • F. A. M. Leermakers
    • 3
  • F. P. C. Wubbe
    • 2
  • A. L. German
    • 2
  1. 1.Océ TechnologiesResearch and Development departmentVenloThe Netherlands
  2. 2.Laboratory of Polymer ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Laboratory for Physical Chemistry and Colloid ScienceWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations