# Modified nonparametric kernel estimates of a regression function and their consistencies with rates

Article

First Online:

- 20 Downloads

## Summary

Two sets of modified kernel estimates of a regression function are proposed: one when a bound on the regression function is known and the other when nothing of this sort is at hand. Explicit bounds on the mean square errors of the estimators are obtained. Pointwise as well as uniform consistency in mean square and consistency in probability of the estimators are proved. Speed of convergence in each case is investigated.

## Key words and phrases

Regression curve retraction mean square weak pointwise uniform consistency rates## Preview

Unable to display preview. Download preview PDF.

## References

- [1]Bierens, H. J. (1983). Uniform consistency of kernel estmators of a regression function under generalized conditions,
*J. Amer. Statist. Ass.*,**78**, 699–707.CrossRefGoogle Scholar - [2]Devroye, L. P. and Wagner, T. (1980). Distribution free consistency results in nonparametric discrimination and regression function estimations,
*Ann. Statist.*,**8**, 231–239.MathSciNetCrossRefGoogle Scholar - [3]Johns, M. V. and Van Ryzin, J. (1972). Convergence rates for empirical Bayes two-action problems II. Continuous case,
*Ann. Math. Statist.*,**43**, 934–947.MathSciNetCrossRefGoogle Scholar - [4]Kale, B. (1962). A note on a problem in estimation,
*Biometrika***49**, 553–556.MathSciNetzbMATHGoogle Scholar - [5]Menon, V. V., Prasad, B. and Singh, R. S. (1984). Nonparametric recursive estimates of a probability density function and its derivations,
*J. Statist. Plann. Inference*,**9**, 73–82.MathSciNetCrossRefGoogle Scholar - [6]Nadaraya, E. A. (1965). On nonparametric estimates of density function and regression curves.
*Theor. Prob. Appl.*,**10**, 186–190.CrossRefGoogle Scholar - [7]Noda, K. (1976). Estimation of a regression function by the Parzen kernel-type density estimators,
*Ann. Inst. Statist. Math.*,**28**, 221–234.MathSciNetCrossRefGoogle Scholar - [8]Parzen, E. (1962). On estimation of a probability density function and mode,
*Ann. Math. Statist.*,**33**, 1065–1076.MathSciNetCrossRefGoogle Scholar - [9]Rosenblatt, M. (1956). Remarks on some nonparametric estimators of density function,
*Ann. Math. Statist.*,**27**, 832–837.MathSciNetCrossRefGoogle Scholar - [10]Schuster, E. F. (1972). Joint asymptotic distribution of the estimated regression function at a finite number of distinct points,
*Ann. Math. Statist.*,**43**, 84–88.MathSciNetCrossRefGoogle Scholar - [11]Schuster, E. F. and Yakowitz, S. (1979). Contributions to the theory of nonparametric regression, with application to system identification,
*Ann. Statist.*,**7**, 139–149.MathSciNetCrossRefGoogle Scholar - [12]Singh, R. S. (1977a). Improvement on some known nonparametric uniformly consistent estimators of derivatives of a density,
*Ann. Statist.*,**5**, 394–399.MathSciNetCrossRefGoogle Scholar - [13]Singh, R. S. (1977b). Applications of estimators of a density and its derivatives to certain statistical problems,
*J. R. Statist. Soc.*,**39**, 357–363.MathSciNetzbMATHGoogle Scholar - [14]Singh, R. S. and Tracy, D. S. (1977). Strongly consistent estimators, of
*k*-th order regression curves and rates of convergence,*Zeit. Wahrscheinlichkeitsth.*,**40**, 339–348.CrossRefGoogle Scholar - [15]Singh, R. S. (1979). Mean, square errors of estimates of a density and its derivatives,
*Biometrika*,**66**, 177–180.MathSciNetCrossRefGoogle Scholar - [16]Singh, R.S. (1980). Estimation of regression curves when the conditional density of the predictor variable is in scale exponential family,
*Multivar. Statist. Anal.*(ed. R. P. Gupta).Google Scholar - [17]Singh, R. S. (1981a). On the exact asymptotic behaviour of estimators of a density and its derivatives,
*Ann. Statist.*,**9**, 453–456.MathSciNetCrossRefGoogle Scholar - [18]Singh, R. S. (1981b). Speed of convergence in nonparametric estimation of a multivariate μ-density and its mixed partial derivatives,
*J. Statist. Plann. Inference*,**5**, 287–298.MathSciNetCrossRefGoogle Scholar - [19]Singh, R. S. and Ullah, A. (1984). Nonparametric recursive estimation of a multivariate, marginal and conditional DGP with an application to specification of econometric models, to appear in
*Commun. Statist*.Google Scholar - [20]Singh, R. S. and Ullah, A. (1985). Nonparametric time series estimation of joint DGP, conditional DGP and vector autoregression,
*Econ. Theory*,**1**, 27–52.CrossRefGoogle Scholar - [21]Spiegelman, C. and Sacks, J. (1980). Consistent, window estimation in nonparametric regression,
*Ann. Statist.*,**33**, 1065–1076.MathSciNetzbMATHGoogle Scholar

## Copyright information

© The Institute of Statistical Mathematics, Tokyo 1987