Annals of the Institute of Statistical Mathematics

, Volume 39, Issue 1, pp 407–415

Modes and moments of unimodal distributions

  • Ken-iti Sato
Article

Summary

For a unimodal distribution relations of its modea with its absolute momentβp and central absolute momentγp of orderp are considered. The best constantAp andBp are given for the inequalities |a|≦Apβp1/p (p>0) and |a−m|≦Bpγp1/p (p≧1) wherem is the mean. the results follow from discussion of more general moments.

Key words and phrases

Unimodal distribution mode moment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dieudonné, J. (1968).Calcul Infinitesimal, Herman, Paris (Japanese translation: Mugenshô-kaiseki, I and II, Tokyo-tosho, Tokyo, 1973).MATHGoogle Scholar
  2. [2]
    Hardy, G. H., Littlewood, J. E. and Pólya, G. (1934).Inequalities. Cambridge University Press, Cambridge.Google Scholar
  3. [3]
    Johnson, N. L. and Rogers, C. A. (1951). The moment problem for unimodal distributions,Ann. Math. Statist.,22, 433–439.MATHMathSciNetGoogle Scholar
  4. [4]
    Sato, K. (1986). Bounds of modes and unimodal processes with independent increments,Nagoya Math. J.,104, 29–42.MATHMathSciNetGoogle Scholar
  5. [5]
    Vysochanskii, D. F. and Petunin, Yu. I. (1982). On a Gauss inequality for unimodal distributions,Theor. Probab. Appl.,27, 359–361.MATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1987

Authors and Affiliations

  • Ken-iti Sato
    • 1
  1. 1.Nagoya UniversityNagoyaJapan

Personalised recommendations