Bayesian analysis of hybrid life tests with exponential failure times

  • Norman Draper
  • Irwin Guttman


A hybrid life test procedure is discussed from the Bayesian viewpoint. A total ofn items is placed on test, failed items are either not replaced or are replaced, and the test is terminated either when a pre-chosen number,K, of items have failed, or when a pre-determined time on test has been reached. Posterior and predictive distributions are obtained under the assumption of an exponential failure distribution, and point and interval estimates are given for the mean life and the life of an untested item. The results are applied to a numerical example.

Key words and phrases

Hybrid life test plans posterior distribution of mean life-times predictive distribution of future lifetimes single exponential distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bhattacharya, S. K. (1967). Bayesian approach to life testing and reliability estimation,J. Amer. Statist. Ass.,62, 48–62.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Draper, N. R. and Guttman, I. (1968). Transformations on life test data,Canad. Math. Bull.,11, 475–478.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Epstein, B. (1954). Truncated life tests in the exponential case,Ann. Math. Statist.,25, 555–564.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Epstein, B. (1960a). Statistical life test acceptance procedures,Technometrics,2, 435–446.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Epstein, B. (1960b). Estimation from life test data,Technometrics,2, 447–454.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Fairbanks, K., Madsen, R. and Dykstra, R. (1982). A confidence interval for an exponential parameter from a hybrid life test,J. Amer. Statist.Ass.,77, 137–140.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Harter, H. L. (1978). MTBF confidence bounds based on MIL-STD-781C fixed length test results,J. Quality Technology,10, 164–169.CrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1987

Authors and Affiliations

  • Norman Draper
    • 1
    • 2
  • Irwin Guttman
    • 1
    • 2
  1. 1.University of Wisconsin-MadisonMadisonUSA
  2. 2.University of TorontoTorontoCanada

Personalised recommendations