Advertisement

Chromatographia

, Volume 52, Issue 5–6, pp 325–333 | Cite as

Chromatographic behaviour of low molar-mass polyesters in normal-phase high-performance liquid chromatography

  • H. J. A. Philipsen
  • H. A. Claessens
  • P. Jandera
  • M. Bosman
  • B. Klumperman
Originals Column Liquid Chromatography

Summary

The normal-phase chromatographic retention behaviour of polyesters on bare silica and on a polymer-based polyamine (PA) column has been studied with a variely of binary mobile phases under isocratic conditions. The dependence of experimental retention data on the degree of polymerization (p) and on mobile phase composition (φ) was characterized by to an approach developed by Jandera et al. The bulky repeating unit and the relatively highly polar end groups of the polyesters both had a large influence on retention behaviour. The two effects in combination explain the molar-mass-independent retention observed experimentally at a particular mobile phase composition for all the mobile phase—stationary phase combinations investigated. These conditions were found to be independent of the type of end group. End group separation on a silica column improves when the polarity of the less polar solvent is increased. End group separation is better on the PA column because of a greater difference between the adsorption energy of the alcohol and acid end groups. Better prediction of retention data on the PA column was achieved by use of an approach which assumes two different types of adsorption site. Results enabled further understanding of retention behaviour in normalphase gradient polymer-elution chromatography (NPGPEC) and explained both the dependence of the order of elution onp and differences between the end-group selectivity of different systems.

Key Words

Column liquid chromatography Normal-phase isocratic elution Normal-phase gradient elution Polyester resins 

Symbols

A0

Adsorbed area of an end group

A1

Adsorbed area of a repeating unit

KD

Chromatographic distribution coefficient

ka0

Retention factor of an end group for 100% less polar solvent, A

ka1

Retention factor of a repeating. unit for 100% less polar solvent, A

k0

Retention factor at the coelution concentration

k01,k02

Retention factors for adsorption sites 1 and 2 for 100% polar solvent B

nb

Adsorbed area of a polar solvent molecule

Q0

Adsorption energy of an end group for pentane as mobile phase

Q1

Adsorption energy of a repeating unit for pentane as mobile phase

Va

Volume of the adsorbed solvent monolayer per unit weight of adsorbent

α1,α2

Partial retention factors for the repeating units on adsorption sites 1 and 2

α

Activity of the adsorbent

β1,β2

Partial retention factors for the end groups on adsorption sites 1 and 2

εa

Polarity of the less polar solvent, A

εb

Polarity of the polar solvent, B

ϕ0

Volume fraction of the polar solvent B in the mobile phase at the coelution point

φ1,φ2

Partial phase ratios for adsorption sites 1 and 2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Snyder, L.R.; Stadalius, M.A.; Quarry, M.A.Anal. Chem. 1983,55, 1413A.Google Scholar
  2. [2]
    Shalliker, R.A.; Kavanagh, P.E.; Russell, I.M.; Hawthorne, D.G.Chromatographia 1992,33, 427.CrossRefGoogle Scholar
  3. [3]
    Rissler, K.; Kunzi, H.P.; Grether, H.J.J. Chromatogr. 1993,635, 89.CrossRefGoogle Scholar
  4. [4]
    Schunk, T.C.J. Chromatogr. A 1993,656, 591.CrossRefGoogle Scholar
  5. [5]
    Glöckner, G.; Wolf, D.; Engelhardt, H.Chromatographia 1994,39, 557.CrossRefGoogle Scholar
  6. [6]
    Reid, S.P.; Meehan, E.; Dawkins, J.V.J. Liq. Chromatogr. 1994,17, 3045.Google Scholar
  7. [7]
    Kawai, T.; Akashima, M.; Teramachi, S.Polymer 1995,36, 2851.CrossRefGoogle Scholar
  8. [8]
    Teramachi, S.Macromol. Symp. 1996,110, 217.Google Scholar
  9. [9]
    Kuo, C.; Provder, H.T.; Holsworth, R.M.; Kah, A.F. InLiquid Chromatography of Polymers and Related Materials, Cazes, J., Ed., Marcel Dekker, New York,1981, p. 169.Google Scholar
  10. [10]
    Shihtse, L.J. Chromatogr. 1985,321, 2.Google Scholar
  11. [11]
    Zeman, I.J. Chromatogr. 1986,363, 223.CrossRefGoogle Scholar
  12. [12]
    Augenstein, M.; Stickler, M.Makromol. Chem. 1990,191, 415.CrossRefGoogle Scholar
  13. [13]
    Mori, S.J. Chromatogr. 1991,541, 375.CrossRefGoogle Scholar
  14. [14]
    Philipsen, H.J.A.; Klumperman, B.; German, A.L.J. Chromatogr. A 1996,746, 211.CrossRefGoogle Scholar
  15. [15]
    Philipsen, H.J.A.; de Cooker, M.R.; Claessens, H.A.; Klumperman, B.; German, A.L.J. Chromatogr. A 1997,761, 147.CrossRefGoogle Scholar
  16. [16]
    Philipsen, H.J.A.; Oestreich, M.; Klumperman, B.; German, A.L.J. Chromatogr. A 1997,775, 157.CrossRefGoogle Scholar
  17. [17]
    Philipsen, H.J.A.; Klumperman, B.; German, A.L.Proc. Int. GPC. Symp., San Diego, September1996, p. 368.Google Scholar
  18. [18]
    Philipsen, H.J.A.; Claessens, H.A.; Bosman, M.; Klumperman, B.; German, A.L.Chromatographia 1998,48, 623.CrossRefGoogle Scholar
  19. [19]
    Jandera, P.Chromatographia 1984,19, 101.Google Scholar
  20. [20]
    Jandera, P.J. Chromatogr. 1984,314, 13.CrossRefGoogle Scholar
  21. [21]
    Jandera, P.; Rozkosna, J.J. Chromatogr. 1986,362, 324.Google Scholar
  22. [22]
    Jandera, P.J. Chromatogr. 1988,449, 361.CrossRefGoogle Scholar
  23. [23]
    Jandera, P.; Urbanek, J.J. Chromatogr. 1995,689, 225.CrossRefGoogle Scholar
  24. [24]
    Jandera, P.Chromatographia 1988,26, 417.CrossRefGoogle Scholar
  25. [25]
    Jandera, P.; Urbanek, J.; Prokes, B.; Churacek, J.J. Chromatogr. 1990,504, 297.CrossRefGoogle Scholar
  26. [26]
    Jandera, P.; Urbanek, J.; Prokes, B.; Blazkova-Brunova, H.J. Chromatogr. A 1996,736, 131.CrossRefGoogle Scholar
  27. [27]
    Snyder, L.R.Principles of Adsorption Chromatography, Marcel Dekker, New York,1968.Google Scholar
  28. [28]
    Soczewinski, E.Anal. Chem. 1969,41, 169.CrossRefGoogle Scholar
  29. [29]
    Entelis, S.G.; Evreinov, V.V.; Gorshkov, A.V.Adv. Polym. Sci. 1986,76, 129.Google Scholar
  30. [30]
    Bosman, M.Investigation of the Functionality Type Separation of Polyester Resins by Gradient Polymer Elution Chromatography and Isocratic Elution, B. Sc. Thesis, Hogeschool van Utrecht, Utrecht, The Netherlands (in Dutch),1997.Google Scholar
  31. [31]
    Snyder, L.R.; Glajch, J.L.; Kirkland, J.J.Practical HPLC Method Development, John Wiley & Sons, New York,1988.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2000

Authors and Affiliations

  • H. J. A. Philipsen
    • 1
  • H. A. Claessens
    • 2
  • P. Jandera
    • 4
  • M. Bosman
    • 3
  • B. Klumperman
    • 3
  1. 1.Océ Technologies, Research and Development departmentVenloThe Netherlands
  2. 2.Laboratory of Instrumental AnalysisEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Laboratory of Polymer ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations