Advertisement

Chromatographia

, Volume 51, Issue 9–10, pp 595–600 | Cite as

Partial least squares modeling of retention data of oxo compounds in gas chromatography

  • K. Héberger
  • M. Görgényi
  • M. Sjöström
Originals

Summary

Partial least squares modeling of latent structures were carried out on a data matrix consisting of Kováts retention indices of 35 aliphatic ketones and aldehydes and their physical characteristics. The retention indices were determined on capillary columns with 4 different stationary phases, namely bonded methyl-{HP-1}, methyl-phenyl- {HP-50} and trifluoropropyl-methyl siloxane {DB-210}, as well as polyethylene glycol {HP-Innovax} at four different temperatures. It was found that ketones and aldehydes cannot be classified on the basis of retention data solely, whereas the physical characteristics (boiling point, molar volume, molecular mass, molar refraction, octanol-water partition coefficient) contain the necessary information for differentiation of the two classes of compounds. The retention index of but-2-enal does not fit into the general trend of aliphatic aldyhydes and ketones. A predictive PLS model was built to estimate retention data of oxo compounds at different temperatures and various stationary phases of different polarity. Cross-validation suggests a good reliability of the results. Characteristic plots (PLS weights, scores) show the similar retention behavior of oxo compounds (Figures 3 and 4).

Key Words

Gas chromatography Kováts retention indices Multivariate techniques Quantitative structure retention relationships Ketones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Geladi, B.R. Kowalski, Anal. Chim. Acta,185, 1 (1986).CrossRefGoogle Scholar
  2. [2]
    S. Wold, PLS for Multivariate Linear Modeling, Chapter 4.4 in Chemometric Methods in Molecular Design, H. Van de Waterbeemd, Ed., VGH, Weinheim, 1995.Google Scholar
  3. [3]
    E. R. Malinowski, Factor analysis in chemistry, 2nd Ed., Willey Intersicence, New York, 1991, Chapter 9, Chromatography, pp. 266–291, and references therein.Google Scholar
  4. [4]
    S. K. Poole, C. F. Poole, J. Chromatogr. A,697, 415 (1995).CrossRefGoogle Scholar
  5. [5]
    S. K. Poole, C. F. Poole, J. Chromatogr. A.697, 429 (1995).CrossRefGoogle Scholar
  6. [6]
    C.E. Reese, L. Huang, S.-H. Hsu, S. Tripathy, C. H. Lochmüller, J. Chromatogr. Sci.,34, 101 (1996).Google Scholar
  7. [7]
    M. Turowski, R. Kaliszan, C. Lüllmann, H. G. Genieser, B. Jastorff, J. Chromatogr. A,728, 201 (1996).CrossRefGoogle Scholar
  8. [8]
    K. Héberger, Chemometrics Intell. Lab. Syst.,47, 41 (1999).CrossRefGoogle Scholar
  9. [9]
    E. Jellum, M. Harboe, G. Bjune, S. Wold, J. Pharm. Biomed. Anal.,9, 663 (1991).CrossRefGoogle Scholar
  10. [10]
    C. Demir, R. G. Brereton, Analyst,122, 631 (1997).CrossRefGoogle Scholar
  11. [11]
    J. Toft, O. M. Kvalheim, Anal. Chem.,85, 2270 (1993).Google Scholar
  12. [12]
    R. V. Golovnya, D. N. Grigoryeva andA. V. Vasilyev, J. High Resolut. Chromatogr.,13, 47 (1990).CrossRefGoogle Scholar
  13. [13]
    J. Raymer, D. Wiesler, M. Novotny, J. Chromatogr.,325, 13 (1982).CrossRefGoogle Scholar
  14. [14]
    F. Saura-Calixto, A. Garcia-Raso, P.M. Déya, J. Chromatogr. Sci.,20, 7 (1982).Google Scholar
  15. [15]
    F. Saura-Calixto, A. Garcia-Raso, J. Cañellas, J. Garcia-Raso, J. Chromatogr. Sci.,21, 267 (1983).Google Scholar
  16. [16]
    L. S. Anker, P. C. Jurs, P. A. Edwards, Anal. Chem.,62, 2676 (1990).CrossRefGoogle Scholar
  17. [17]
    M. Görgényi, H. Van Langenhove, Z. Király, J. Chromatogr.,693, 181 (1995).CrossRefGoogle Scholar
  18. [18]
    M. Gassiot-Matas, G. Firpo-Pamies, J. Chromatogr.,187, 1 (1980).CrossRefGoogle Scholar
  19. [19]
    F. Patte, M. Etcheto, P. Laffort, Anal. Chem.54, 2239 (1982).CrossRefGoogle Scholar
  20. [20]
    F. Saura-Calixto, A. Garcia Raso, Chromatographia,12, 771 (1982).CrossRefGoogle Scholar
  21. [21]
    H. Tamura, Sh. Kihara, H. Sugisawa, Agricult. Biol. Chem.54, 3171 (1990).Google Scholar
  22. [22]
    J. P. Vidal, S. Estreguil, R. Cantagrel, Chromatographia,36, 183 (1993).CrossRefGoogle Scholar
  23. [23]
    M. Görgényi, K. Héberger, J. Chromatogr. Sci.,37, 11 (1999).Google Scholar
  24. [24]
    K. Héberger, M. Görgényi, J. Chromatogr. A,845, 13 (1999).CrossRefGoogle Scholar
  25. [25]
    Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, R. C. Weast, Ed., 68th edition. 1984.Google Scholar
  26. [26]
    C. Hansch, C. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley & Sons, New York, 1979.Google Scholar
  27. [27]
    SIMCA version 7.01 (Umetrics Inc).Google Scholar
  28. [28]
    J. A. Yancey, J. Chromatogr. Sci.,23, 349 (1994).Google Scholar
  29. [29]
    J. A. Yancey, J. Chromatogr. Sci.,32, 403 (1994).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2000

Authors and Affiliations

  • K. Héberger
    • 1
  • M. Görgényi
    • 2
  • M. Sjöström
    • 3
  1. 1.Institute of Chemistry, Chemical Research CenterHungarian Academy of SciencesBudapestHungary
  2. 2.Institute of Physical ChemistryUniversity of SzegedSzegedHungary
  3. 3.Research Group for Chemometrics, Department of Organic ChemistryUmeå UniversityUmeaSweden

Personalised recommendations