Advertisement

The botanical magazine = Shokubutsu-gaku-zasshi

, Volume 96, Issue 4, pp 393–410 | Cite as

Plant tissue culture: A history

  • Roger J. Gautheret
Invited Article

Abstract

The author has lived in the plant tissue culture history since its beginning and had the opportunity to discuss with all the pioneers.

Then in the present contribution he expresses personal memories, some of them being almost unknown.

The tissue culture problem was suggested as soon as 1838 by Schleiden and Schwann's cell theory. The first experimental approach was vainly tried by Haberlandt in 1902.

Following Carrel's success with animal cells, encouraging results were obtained on plants tissues by Gautheret in 1934 and the problem was definitely solved in 1939, independently by Gautheret, Nobécourt and White.

The progress was slow because this new field interested only a few people. However in 1954 the principal chapters of this subject were already opened: Tissue culture, cell culture, improving of nutrients, especially of growth substances, expertness of organ formation and vegetative propagation, attempts to obtain secondary products and application to pathological problems.

Later, in 1966 the androgenesis was initiated by Guha and Maheshwari, while Küster's pioneer work on protoplast fusion was exhumed and brought about innumerable investigations.

Finally, for the past ten years plant tissue culture has truly exploded and now more than ten thousand people are engaged in this field: International Congress held in July 1982 at Lake Yamanaka, Japan is evidence for this effusive development.

Keywords

Tissue Culture Kinetin Vascular Bundle Growth Substance Zeatin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasu, M., H. Itakawa andM. Fujita. 1976. Biscoclaurine alkaloids in callus tissues ofStephania cepharantha. Phytochemistry15: 471–473.CrossRefGoogle Scholar
  2. Backs-Husemann, D. andJ. Reinert. 1970. Embryobildung durch isolierte Einzelzellen aus Gewebekulturen vonDaucus carota. Protoplasma70: 49–60.CrossRefGoogle Scholar
  3. Ball, E. 1946. Development in sterile culture of stem tips and subjacent regions ofTropaeolum majus L. and ofLupinus albus L. Amer. J. Bot.33: 301–318.CrossRefGoogle Scholar
  4. — 1950. Differentiation in a callus culture ofSequoia sempervirens. Growth14: 295–325.PubMedGoogle Scholar
  5. Barski, G., S. Sorieul andF. Cornefert. 1960. Production dans des culturesin vitro de deux souches cellulaires en association de cellules de caractère “Hybride”. C.R. Ac. Sc.251: 1825–1827.Google Scholar
  6. Bayliss, M.W. 1980. Chromosomal variation in plant tissue culture.In: Perspective in Plant Cell and Tissue Culture. Academic Press p. 113–144.Google Scholar
  7. Bergmann, D. 1959. A new technique for isolating and cloning cells of higher plants. Nature184: 648–649.CrossRefGoogle Scholar
  8. Black, L.M. 1946. Plant tumors induced by the combined action of wounds and virus. Nature158: 56–58.Google Scholar
  9. Blumenthal, F. andP. Meyer. 1924. Über durchAcidum lacticum erzeugte Tumoren auf Mohrrübensheiben. Z. f. Krebsg.21: 250–252.CrossRefGoogle Scholar
  10. Bobilioff-Preisser, N. 1917. Beobachtungen an isolierten Palisaden und Schwammparenchymzellen. Beih. Z. Bot. Zlb.33: 248–274.Google Scholar
  11. Börger, H. 1926. Über die Kultur von isolierten Zellen und Gewebefragmenten. Arch. f. exp. Zellf.2: 123–190.Google Scholar
  12. Bourgin, J.P. andJ.P. Nitsch. 1967. Obtention deNicotiana haploides à partir d'étamines cultivéesin vitro. Ann. Physiol. vég.9: 377–382.Google Scholar
  13. Braun, A.C. 1950. Thermal inactivation studies on the tumor-inducing principle in crown-gall. Phytopathology40: 3.Google Scholar
  14. — 1959. A demonstration of the recovery of crown-gall tumor cell with the use of complex tumor of the single cell origin. Proc. Nat. Acad. Sci.45: 932–938.PubMedCrossRefGoogle Scholar
  15. Buvat, R. 1944–1945. Recherches sur la dédifférenciation des cellules végétales. Ann. Sci. Nat. Bot. Biol. Vég.5: 1–130 and6: 1–119.Google Scholar
  16. Camus, G. 1949. Recherches sur le rôle des bourgeons dans les phénomènes de morphogenèse. Rev. Cyt. Biol. Végét.11: 1–195.Google Scholar
  17. Caplin, S.M. andF.C. Steward. 1948. Effect of coconut milk on the growth of explants from carrot root. Science108: 655.PubMedGoogle Scholar
  18. Carlson, P.S., H.H. Smith andR.D. Dearing. 1973. Parasexual interspecific plant hybridization. Proc. Nat. Acad. Sci.69: 2292–2294.CrossRefGoogle Scholar
  19. Carrel, A. 1912. On the permanent life of tissues outside of the organism. J. Exp. Med.15: 516–528.CrossRefGoogle Scholar
  20. Cocking, E.C. 1960. A method for the isolation of plant protoplasts and vacuoles. Nature187: 927–929.CrossRefGoogle Scholar
  21. Czech, H. 1926. Kultur von pflanzlichen Gewebe-zellen. Arch. f. Exp. Zellf.3: 176–179.Google Scholar
  22. d'Amato, F. 1977. Cytogenetics of differentiation in tissue and cell cultures.In: Applied and Fundamental, Aspects of Plant, Cell, Tissue an Organ Culture p. 343–356. Springer Verlag, Berlin.Google Scholar
  23. Deus, B. 1977. Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures ofCatharanthus roseus.In: W. Barzet al., ed., Plant Tisse Culture and Its Biotechnological Application p. 27–43. Springer-Verlag, Berlin.Google Scholar
  24. Döller, G. 1978.In: Production of Natural Compounds by Cell Culture Methods p. 109–116. Ges. für strahlen und Umweltforschung, Munich.Google Scholar
  25. Gautheret, R.J. 1932. Sur la culture d'extrémités de racines. C.R. Soc. Biol.109: 1236–1238.Google Scholar
  26. — 1933. Cultures de cellules détachées de la coiffe. C.R. Ac. Sc.196: 638–640.Google Scholar
  27. — 1934. Culture du tissu cambial C.R. Ac. Sc.198: 2195–2196.Google Scholar
  28. Gautheret, R.J. 1935. Recherches sur la culture des tissus végétaux. Thèse Sc. Paris pp. 279.Google Scholar
  29. — 1938. Sur le repiquage des cultures de tissue cambial deSalix caprea. C.R. Ac. Sc.206: 125–127.Google Scholar
  30. — 1939. Sur la possibilité de réaliser la culture indéfinie des tissus de tubercules de Carotte. C.R. Ac. Sc.208: 118–130.Google Scholar
  31. — 1941a. Remarques sur la structure des tissus de Carotte cultivésin vitro. C.R. Soc. Biol.134: 437–438.Google Scholar
  32. — 1941b. Sur le repiquage des cultures de tissus d'Endive, de Salsifis et de Topinambour. C.R. Ac. Sc.213: 317–318.Google Scholar
  33. — 1942a. Recherches sur le développement de fragments de tissus végétaux cultivésin vitro. Rev. Cytol. et Cytophys. Vég.6: 87–180.Google Scholar
  34. — 1942b. Le bourgeonnement des tissus végétaux en culture. Sciences40: 95–128.Google Scholar
  35. — 1942c. Hétéro-auxines et cultures de tissus végétaux. Bull. Soc. Chim. Biol.24: 13–41.Google Scholar
  36. — 1944. Caractères anatomiques de fragments de parenchyme vasculaire de Topinambour, d'Endive et de Carotte cultivésin vitro. C.R. Soc. Biol.138: 395–396.Google Scholar
  37. — 1945. Remarques sur la formation des méristèmes dans les tissus végétaux cultivésin vitro. C.R. Ac. Sc.220: 54–56.Google Scholar
  38. — 1948. Action de l'acide indole-acétique sur le développement des trois types de tissues de Scorsonère: tissus normaux, tissus de crown-gall et tissus accoutumés à l'hétéro-auxine. C.R. Soc. Biol.140: 774–775.Google Scholar
  39. — 1959. La Culture des Tissus Végétaux: Principes et Réalisations p. 149 and p. 347–402. Masson ed., Paris.Google Scholar
  40. — 1961. Action de la lumière et de la température sur la néoformation de racines par les tissus de Topinambour cultivésin vitro. C.R. Ac. Sc.250: 2791–2796.Google Scholar
  41. — 1964a. Action conjugée de l'acide gibbérellique de la cinétine et de l'acide indoleacétique sur les tissus cultivésin vitro, particulièrement sur ceux de Topinambour. C.R. Ac. Sc.253: 1381–1385.Google Scholar
  42. Gautheret, R.J. 1964b. Factors affecting differentiation of plant tissues grownin vitro. In: Cell Differentiation and Morphogenesis. Intern. Lecture Course Wageningen 1966: 55–95, North Holland.Google Scholar
  43. — 1969. Investigations on the root formation in the tissues ofHelianthus tuberosus culturedin vitro. Amer. J. Bot.56: 702–717.CrossRefGoogle Scholar
  44. Gioelli, F. 1938. Morfologia, istologia, fisiologia e fisiopatologia di meristemi secondariin vitro. Att. Ac. Sc. Ferrara16: 1–87.Google Scholar
  45. Guha, S. andS.C. Maheshwari. 1964.In vitro production of embryos from anthers ofDatura. Nature204: 497–498.CrossRefGoogle Scholar
  46. Haberlandt, G. 1902. Kulturversuche mit isolierten Pflanzenzellen. Sitz Akad. Wiss. Wien111: 69–92.Google Scholar
  47. — 1913. Zur physiologie der Zellteilung. Sitz. Kgl. Preuss. Akad. Wiss. Berlin16: 318–345.Google Scholar
  48. — 1922. Über Zellteilung-hormone und ihre Beziehugen zur Wundheilung Befruchtung Parthenogenesis und Adventivembryonie. Biol. Zentralbl.42: 145–172.Google Scholar
  49. Harrison, R.G. 1907. Observations on the living developing nerve fiber. Proc. Soc. Exp. Biol. Med.4: 140–143.Google Scholar
  50. Henderson, J.H.M. 1954. The changing nutritional pattern from normal to habituated sunflower callus tissuein vitro. Ann. Biol.30: 329–348.Google Scholar
  51. Hildebrandt, A.C. 1951.In vitro experiments on tissues of pathological origin.In: Plant Growth Substances p. 391–404. Univ. Wisconsin Press, Madison.Google Scholar
  52. Hollings, M. andA.M. Stone. 1968. Techniques and problems in the production of virus tested planting material. Sci. Hort.20: 57–72.Google Scholar
  53. Jacquiot, C. 1964. Application de la technique de culture des tissus végétaux a l'étude de quelques problèmes de la physiologie des arbres. Ann. Sc. Forestières.21: 317–473.Google Scholar
  54. Kado, C.I. andA. Kleinhofs. 1980. Genetic modification of plant cells through uptake of foreign D.N.A.In: Perspective in Plant Cell and Tissue Culture B p. 47–80. Academic Press, New York.Google Scholar
  55. Kao, K.N., W.A. Keller andR.A. Miller. 1970. Cell division in newly formed cells from protoplasts of soybean. Exp. Cell Res.62: 338–340.PubMedCrossRefGoogle Scholar
  56. Kemmer, E. 1928. Beobachtungen über die Lebensdauer isolierter Epidermen. Arch. f. Exp. Zellf.7: 1–68.Google Scholar
  57. Klercker, I.A.F. 1892. Eine methode zu Isolierung lebender Protoplasten. Oefvers. K. Vetensk. Akad. Foerh, Stockholm9: 463–471.Google Scholar
  58. Knudson, L. 1919. Viability of detached root-cap cells. Amer. J. Bot.6: 309–310.CrossRefGoogle Scholar
  59. Kögl, F., A.J. Haagen-Smit andM. Erxleben. 1934. Über ein neues Auxin (“Hetero-Auxin”) aus Harn. Z. Physiol. Chem.228: 90–103.Google Scholar
  60. Kotte, W. 1922. Kulturversuche mit isolierten Wurzelspitzen. Beitr. z. Allgem. Bot.2: 413–434.Google Scholar
  61. Kulesha, Z. andR.J. Gautheret. 1948. Sur l'élaboration de substances de croissance par trois types de cultures de tissues de Scorsonère: cultures normales, cultures de crown-gall et cultures accoutmées à l'hétéro-auxine. C.R. Ac. Sc.227: 292–294.Google Scholar
  62. Kunkel, W. 1926. Über die Kultur von Perianthgeweben. Arch. f. Exp. Zellf.3: 405–428.Google Scholar
  63. Kuroda, K. 1960. Action inductrice des formations cribro-vasculaires sur les phénomènes d'histogenèse dans les tissues de Carotte cultivésin vitro. C.R. Ac. Sc.251: 272–274.Google Scholar
  64. — 1961. Recherches sur les phénomènes d'inductions histogénétiques provoqués des tissues normaux et tumoraux des plantes. Ann. Rep. Scient. Works. Fac. Sci. Osaka Univ.9: 29–50.Google Scholar
  65. Küster, E. 1909. Über die verschmelzung nachter Protoplasten. Ber. Dtsch. Bot. Ges.27: 589–598.Google Scholar
  66. La Rue, C.D. 1947. Growth and regeneration of the endosperm of maize in culture. Amer. J. Bot.344: 585–586.Google Scholar
  67. Ledoux, L. 1965. Uptake of DNA by living cells. Progress in Nucleic Acid Research. Mol. Biol.4: 231–267.Google Scholar
  68. Letham, D.S. 1963. Zeatin, a factor inducing cell division isolated fromZea mays. Life Sci.2: 569–579.CrossRefGoogle Scholar
  69. — 1974. The cytokinins of coconut milk. Physiol. Plant.32: 66–70.CrossRefGoogle Scholar
  70. Letham, D.S., I.S. Shannon and I.R. McDonald. 1964. The structure of zeatin, a factor inducing cell division. Proc. Chem. Soc. 230–231.Google Scholar
  71. Levine, M. 1947. Differentiation of carrot root tissue grownin vitro. Bull. Torrey Bot. Club74: 321–328.CrossRefGoogle Scholar
  72. Limasset, P. andP. Cornuet. 1949. Recherche du virus de la mosaique du Tabac dans les méristèmes des plantes infectées. C.R. Ac. Sc.228: 1971–1972.Google Scholar
  73. — andR.J. Gautheret. 1950. Sur le caractére tumoral des tissues de Tabac ayant subi le phénomène d'accoutumance aux hétéro-auxines. C.R. Ac. Sc.230: 2043–2045.Google Scholar
  74. Loo, S.W. 1945. Cultivation of excised stem tips ofAsparagus in vitro. Amer. J. Bot.32: 13–17.CrossRefGoogle Scholar
  75. — 1946. Cultivation of excised stem tips of dodderin vitro. Amer. J. Bot.33: 295–300.CrossRefGoogle Scholar
  76. Lutz, A. 1963. Description d'une technique d'isolement cellulaire en vue de l'obtention de cultures de tissues végétaux provenant d'une cellule unique. C.R. Ac. Sc.256: 2676–2678.Google Scholar
  77. Marotta, L. 1935. I risultati di alcune culturein vitro di cellule vegetali isolate. Rendic. R. Acad. Naz. Lincei. Sci. Fis. Mat. Nat. Cl.21: 211–215.Google Scholar
  78. Melchers, G., M.D. Sacristan andA. Holder. 1978. Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Res. Comm.43: 203–218.Google Scholar
  79. Miller, C. 1961. A kinetin-like compound in maize. Proc. Nat. Acad. Sci.47: 170–174.PubMedCrossRefGoogle Scholar
  80. —,F. Skoog, M.H. von Saltza andE.M. Strong. 1955a. Kinetin, a cell division factor from deoxyribonucleic acid. J. Amer. Chem. Soc.77: 1392.CrossRefGoogle Scholar
  81. . 1955b. Structure and synthesis of kinetin. J. Amer. Chem. Soc.77: 2662–2663.CrossRefGoogle Scholar
  82. Morel, G. 1950a. Sur la culture des tissus de deux Monocotylédones. C.R. Ac. Sc.230: 1099–1101.Google Scholar
  83. — 1950b. Sur la culture des tissues d'Osmunda cinnamomea. C.R. Ac. Sc.230: 2318–2320.Google Scholar
  84. — 1963. La culturein vitro du méristème apical de certaines Orchidées. C.R. Ac. Sc.256: 4955–4957.Google Scholar
  85. — andC. Martin. 1950. Guérison de dahlias atteints d'une maladie â virus. C.R. Ac. Sc.235: 1324–1325.Google Scholar
  86. —and—. 1955. Guérison de pommes de terre atteintes de malâdies a virus. C.R. Ac. Agric.41: 470–475.Google Scholar
  87. Muir, W.H., A.C. Hildebrandt andA.J. Riker. 1954. Plant tissue cultures produced from single isolated cells. Science119: 877–878.Google Scholar
  88. Murashige, T. andF. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant.15: 473–497.CrossRefGoogle Scholar
  89. Nickell, L.G. 1952. Tissue culture studies on plant tumors caused by virus. Torreya.79: 264–265.Google Scholar
  90. Nobécourt, P. 1938. Sur les proliférations spontanées de fragments de tubercules de Carotte et leur culture sur milieu synthétique. Bull. Soc. Bot. Fr.85: 1–7.Google Scholar
  91. — 1939. Sur la pérennité et l'augmentation de volume des cultures de tissues végétaux. C.R. Soc. Biol.130: 1270–1271.Google Scholar
  92. Paupardin, C. 1971. Sur l'évolution des huiles essentielles dans les tissus de péricarpe de citron (Citrus limonia Osbeck) cultivésin vitro. C.R. Ac. Sc.273: 1690–1693.Google Scholar
  93. Pfeiffer, H. 1931. Beobachtungen an Kulturen nackter Zellen aus pflanzlichen Beerenperikarpien. Arch. f. Exp. Zell.11: 424–434.Google Scholar
  94. Quack, F. 1961. Heat treatment and substances inhibiting, virus multiplication, in meristem culture to obtain virus-free plants. Adv. Hort. Sci. Appl.1: 144–148.Google Scholar
  95. Rechinger, C. 1893. Untersuchungen über die Grenzen der Teilbarkeit im Pflanzenreich. Abh. d. Zool. Bot. Ges. Wien43: 310–334.Google Scholar
  96. Herwald, C. 1927. Über pflanzliche Tumoren als vermeintliche Wirkung chemischer Reizung. Zeitsch. f. Planzenk. Pflanzensch.37: 65–86.Google Scholar
  97. Reinert, J. 1958. Über die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta53: 318–333.CrossRefGoogle Scholar
  98. Robbins, W.J. 1922a. Cultivation of excised root-tips and stem tips under sterile conditions. Bot. Gaz.73: 376–390.CrossRefGoogle Scholar
  99. — 1922b. Effect of autolyzed yeast and peptone on growth of excised corn root tips in the dark. Bot. Gaz.74: 59–79.CrossRefGoogle Scholar
  100. Sachs, J. 1880–1882. Stoff und der Pflanzenorgane. Arch. Bot. Inst. Würzburg.2: 453, 689.Google Scholar
  101. Sandford, K., G.D. Likely andW.R. Earle. 1948. The growthin vitro of single isolated tissue-cells. J. Nat. Cancer Inst.9: 229–246.Google Scholar
  102. Schleiden, M.J. 1838. Beiträge zur Phytogenesis. Müller Arch. Anat. und Physiol.: 137–176.Google Scholar
  103. Schmucker, T. 1929. Isolierte Gewebe und Zellen von Blütenpflanzen. Planta9: 339–340.CrossRefGoogle Scholar
  104. Schwann, Th. 1839. Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Waschtum der Thiere und Pflanzen. Nr.176: Oswalds Berlin.Google Scholar
  105. Short, K.C., E.G. Brown andH.E. Street. 1969. Studies on the growth in culture of plant cells. V. Large scale culture ofAcer platanus cell suspensions. J. Exp. Bot.20: 579–590.Google Scholar
  106. Simon, S. 1908. Experimentelle Untersuchungen über die Differezierungs-vorgänge im Callusgewebe von Holzgewächsen. Jahrb. f. Wiss. Bot.45: 351–478.Google Scholar
  107. Skoog, F. and C.O. Miller. 1957. Chemical regulation of growth and organ formation in plant tissues culturedin vitro. Symp. Soc. Exp. Biol. No. 11, The Biological Action of Growth Substances: 118–131.Google Scholar
  108. Smith, E. andC.D. Townsend. 1907. A plant tumor of bacteriological origin. Science25: 671–673.PubMedGoogle Scholar
  109. Snow, R. 1935. Activation of cambial growth by pure hormones. New Phytol.34: 347–360.CrossRefGoogle Scholar
  110. Street, H.E. 1973. Plant Tissue and Cell Culture p. 6–7. Blackwell, Oxford.Google Scholar
  111. Takebe, I., C. Labib andG. Melchers. 1971. Regulation of whole plants from isolated mesophyll protoplasts of tobacco. Naturwiss.58: 318–320.CrossRefGoogle Scholar
  112. Telle, J. andR.J. Gautheret. 1947. Sur la culture indéfinie des tissus de la racine de Jusquiame (Hyoscyamus niger L.) C.R. Ac. Sc.224: 1653–1654.Google Scholar
  113. Thielman, N.M. 1924. Über Kultuversuche mit Spaltöffnungszellen. Ber. Dtsch. Bot. Gesell.42: 429–433.Google Scholar
  114. Trécul, A. 1853. Accroissement des végétaux dicotylédones ligneux (reproduction du bois et de l'écorce par le bois décrotiqué). Ann. Sc. Nat.19: 157–192.Google Scholar
  115. Tulecke, W.R. 1953. A tissue derived from the pollen ofGinkgo biloba. Science117: 599–620.PubMedGoogle Scholar
  116. Ulehla, V. 1928. Versuche zur Kultur des Pflanzengewebes I. Das Wasser als Factor der Gewebekultur. Arch. Exp. Zellf.6: 370–417.Google Scholar
  117. Van Staden, J. andS.E. Drewes. 1979. Identification of zeatin and zeatinriboside in coconut milk. Physiol. Plant.34: 106–109.CrossRefGoogle Scholar
  118. Vasil, V. andA.C. Hildebrandt. 1965. Differentiation of tobacco plants from single isolated cells in microcultures. Science150: 889–890.PubMedGoogle Scholar
  119. Vöchting, H. 1878. Über Organbildung im Pflanzenzeich “Max Cohe” Ed. Bonn.Google Scholar
  120. Went, F.W. 1926. On growth accelerating substances in the coleoptile ofAvena sativa. Proc. Kon. Nederl. Akad. Wetensch. Amsterdam30: 10Google Scholar
  121. White, P.R. 1933. Plant tissue culture: results of preliminary experiments on the culuring of isolated stem-tips ofStellaria media. Protoplasma19: 97–116.CrossRefGoogle Scholar
  122. — 1934a. Potentially unlimited growth of excised tomato root-tips in a liquid medium. Plant. Physiol.9: 585–600.PubMedCrossRefGoogle Scholar
  123. — 1934b. Multiplication of the viruses of tobacco andAucuba mosaic in growing excised tomato roots. Phytopathology24: 1003–1011.Google Scholar
  124. — 1939a. Potentially unlimited growth of excised plant callus in an artificial medium. Amer. J. Bot.26: 59–64.CrossRefGoogle Scholar
  125. — 1939b. Controlled differentiation in a plant tisue culture. Bull. Torrey. Bot. Club66: 507–513.CrossRefGoogle Scholar
  126. — 1963. The Cultivation of Animal and Plant Cells p. 17. Ronald Press, New York.Google Scholar
  127. — andA.C. Braun. 1941. Crown-gall production by bacteria-free tumor tissues. Science94: 239–241.PubMedGoogle Scholar
  128. . 1942. A cancerous neoplasm of plants. Autonomous bacteria-free crown-gall tissue. Cancer Res.2: 597–657.Google Scholar
  129. Wiesner, J. 1884. Untersuchungen über die Wachstumsbewegungen der Wurzel Sitz. Akad. Wiss. Wien89: 223.Google Scholar
  130. Wilson, S.B., P. King andH.E. Street. 1971. Studies on the growth in culture of plant cells. XII. A versatile system for the large scale batch or continuous culture of plant cell suspensions. J. Exp. Bot.21: 177–207.Google Scholar
  131. Yamada, T., T. Shoji andY. Sinoto. 1963. Formation of calli and free cells in the tissue culture ofTradescantia reflexa. Bot. Mag. Tokyo76: 332–339.Google Scholar
  132. Zenk, M.H. 1978. The impact of plant cell culture in industry.In: Frontiers of Plant Tissue Culture p. 1–13. Univ. of Calgary Press.Google Scholar
  133. —,H. El-Shagi, H. Arens, J. Stockigt, E.W. Weiler andB. Dens. 1977. Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures ofCatharanthus roseus.In: W. Barzet al., ed., Plant Tissue Culture and Its Biotechnologi cal Application p. 27–43. Springer-Verlag, Berlin.Google Scholar

Copyright information

© The Botanical Society of Japan 1983

Authors and Affiliations

  • Roger J. Gautheret
    • 1
  1. 1.ParisFrance

Personalised recommendations