Re-examination ofPyrenomonas andRhodomonas (class cryptophyceae) through ultrastructural survey of red pigmented cryptomonads

  • Mayumi Erata
  • Mitsuo Chihara


Several taxa of cryptomonads, including species of marineChroomonas, Cryptomonas and freshwaterRhodomonas were examined using transmission electron microscopy. They have cellular structures fundamentally in common: a single bilobed chlorplast, a single pyrenoid between the chloroplast lobes, and a nuclemorph embedded within a cleft of the pyrenoidal matrix. These features are in accordance with the taxonomic characteristics of the recently established genusPyrenomonas. The algae also have similar pigmentation to that ofRhodomonas andPyrenomonas which is red or reddish-brown. On the basis of these observations, the genusRhodomonas Karsten (1898) is redescribed in this paper and the genusPyrenomonas Santore is considered to be synonymous withRhodomonas.

Key words

Nucleomorph Periplastidal compartment Pyrenomonas Rhodomonas 

Abbreviations for figures




chloroplast ER


contractile vacuole


fibrillogranular body




Golgi body
















large trichocyst


small trichocyst


  1. Burtcher, R.W. 1952. Contributions to our knowledge of the smaller marine algae. J. Mar. Biol. Ass. U. K.31: 175–192.CrossRefGoogle Scholar
  2. — 1967. An introductory account of the smaller algae of British coastal waters. Part IV. Cryptophyceae. Fishery Investigations Series IV. 1–54. Her Majesty's Stationery Office, London.Google Scholar
  3. Carter, N.. 1937. New or interesting algae from brackish water. Arch. Protistenk.90: 1–68.Google Scholar
  4. Conrad, W. 1939. Sur quatre Cryptomonadines rouges. Bull. Mus. R. Hist. Nat. Belg.15: 1–5.Google Scholar
  5. Dodge, J.D. 1969. The ultrastructure ofChroomonas mesostigmatica Butcher (Cryptophyceae). Arch. Mikrobiol.69: 266–280.CrossRefGoogle Scholar
  6. Gantt, E. 1979. Phycobiliproteins of Cryptophyceae.In: Levandowsky, M. and S.H. Hutner, ed., Biochemistry and Physiology of Protozoa. Vol.1, pp. 121–138. Academic Press, New York.Google Scholar
  7. Geitler, L. 1922. Die Mikrophyten-Biocoenose der Fontinalis-Bestände des Lunzer Untersees und ihre Abhängigkeit vom Licht. Int. Revue d. ges. Hydrobiol. und Hydrog.10: 683–691.Google Scholar
  8. Gillott, M.A. andS.P. Gibbs. 1980. The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J. Phycol.16: 558–568.CrossRefGoogle Scholar
  9. Hansgirg, A. 1985. Über den Polymorphismus der Algen. Bot. Centralbl.23: 229–233.Google Scholar
  10. Javornický, P. 1976. Minute species of the genusRhodomonas (Karsten (Cryptophyceae). Arch. Protistenk.118: 98–106.Google Scholar
  11. Karsten, G. 1898.Rhodomonas baltica N. g. et sp. Wiss. Meeresunters. Kiel3: 15–16.Google Scholar
  12. Klaveness, D. 1981.Rhodomonas lacustris (Pascher & Ruttner) Javornický (Cryptomonadida): ultrastructure of the vegetative cell. J. Protozool.28: 83–90.Google Scholar
  13. Kylin, H. 1935. ÜberRhodomonas, Platymonas undPrasinocladus. Kungl. Fysiogr. Sällsk. i. Lund Förhandl.5: 1–13.Google Scholar
  14. Lucas, I.A.N. 1968. Three new species of the genusCryptomonas (Cryptophyceae). Brit. Phycol. Bull.3: 535–541.Google Scholar
  15. MacColl, R. andD. Guard-Friar. 1987. Cryptomonads.In MacColl and Guard-Friar, Phycobiliproteins. pp. 175–192. CRC Press, Boca Raton.Google Scholar
  16. Oakley, B.R. andT. Bisalputra. 1977. Mitosis and cell division inCryptomonas (Cryptophyceae). Can. J. Bot.55: 2789–2800.CrossRefGoogle Scholar
  17. Okaichi, T., S. Nishio andY. Imatomi. 1982. Collection and mass culture.In Jpn. Soc. Sci. Fish., ed., Toxic phytoplankton—occurrence, mode of action, and toxins, pp. 23–34. Koseisha-Koseikaku, Tokyo (in Japanese).Google Scholar
  18. Pascher, A. 1913. Cryptomonadinae.In A. Pascher, ed., Süßwasser-Flora Deutschlands, Österreichs und der Schweiz, H2, pp. 96–114. Fischer, Jena.Google Scholar
  19. Pringsheim, E.G. 1944. Some aspects of taxonomy in the Cryptophyceae. New Phytol.43: 143–150.CrossRefGoogle Scholar
  20. Provasoli, L. andI.J. Pintner. 1959. Artificial media for freshwater algae: Problems and suggestions.In Tryon, C.A. and R.T. Hartmann, ed., The Ecology of Algae, Spec. Publ. No. 2, Pymatuning Lab. of Field Biology, pp. 84–96. University of Pittsburgh, Pittsburgh.Google Scholar
  21. Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell. Biol.17: 208–212.PubMedCrossRefGoogle Scholar
  22. Santore, U.J. 1982. Comparative ultrastructure of two members of the Cryptophycea assigned to the genusChroomonas—with comments on their taxonomy. Arch. Protistenk.125: 5–29.Google Scholar
  23. — 1984. Some aspects of taxonomy in the Cryptophyceae. New Phytol.98: 627–646.CrossRefGoogle Scholar
  24. — 1986. The ultrastructure ofPyrenomonas heteromorpha comb. nov. (Cryptophyceae). Botanica Marina29: 75–82.CrossRefGoogle Scholar
  25. Skuja, H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb. Bot. Upsal.9(3): 1–399.Google Scholar
  26. Spurr, A.R. 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26: 31–57.PubMedCrossRefGoogle Scholar
  27. Wislouch, S. 1924. Przycnek do biologji solnisk i genezy szlamov leczniczych na Krymie. Acta Soc. Bot. Pol.2: 99–129.Google Scholar
  28. Zimmermann, W. 1925. Helgoländer Meeresalgen. I-IV. Wiss. Meeresunters. Helgoland16: 1–25.Google Scholar

Copyright information

© The Botanical Society of Japan 1989

Authors and Affiliations

  • Mayumi Erata
    • 1
  • Mitsuo Chihara
    • 1
  1. 1.Institute of Biological SciencesUniversity of TsukubaTsukuba-shi, Ibaraki

Personalised recommendations