Advertisement

Materials and Structures

, Volume 30, Issue 9, pp 545–551 | Cite as

Properties of some cement stabilised compressed earth blocks and mortars

  • Peter Walker
  • Trevor Stace
Scientific Reports

Abstract

Findings from an on-going investigation into the effects of soil properties and cement content on physical characteristics of compressed earth blocks and soil mortars are presented. A series of test blocks were fabricated using a range of composite soils, stabilised with 5% and 10% cement, and compacted with a manual press. Results for saturated compressive strength, drying shrinkage, wetting/drying durability, and water absorption testing are presented in the paper. In conjunction with the block tests, workability and compressive strength characteristics of suitable soil: cement and cement: lime: sand mortars were also studied. Mortar consistency was assessed using cone penetrometer and slump tests. Water retention properties of the mortars were also measured. For a given compactive effort, the strength, drying shrinkage, and durability characteristics of the compressed earth blocks improved with increasing cement and reducing clay content. Slump testing proved the most reliable means of assessing soil: cement mortar consistency. Both the flow table and cone penetrometer tests were found to be unsuitable. Water retention properties of soil: cement mortars appear well-suited to typical unit water absorption characteristics. Mortar strengths were closely related to cement and clay contents, but as expected were less than the average unit strengths.

Keywords

Compressive Strength Clay Content Cement Content Cement Mortar Cone Penetrometer 

Résumé

On présente les résultats de recherches en cours sur les effets des propriétés des sols et des taux de ciment sur les caractéristiques physiques de blocs de terre comprimés et de mortiers de sol. On a fabriqué une série de blocs d'essai en utilisant une gamme de sols composés, traités au ciment à 5% et à 10% et comprimés à l'aide d'une presse manuelle. On présente ici les résultats pour la résistance à la compression saturée, le retrait de séchage, la dura-bilité mouillée et sèche, et l'absorption d'eau. Conjointement avec les essais sur blocs, on a étudié les propriétés d'ouvrabilité et de résistance à la compression de certains mortiers sol:ciment et ciment: chaux; sable. On a évalué la consistance des mortiers au moyen d'un pénétromètre à cône et des essais d'affaissement, et mesuré les propriétés de rétention d'eau. Pour une pression de compactage donnée, les caractéristiques de résistance, de retrait de séchage et de durabilité se sont améliorées avec un taux croissant de ciment et un taux décroissant d'argile. Les essais d'affaissement ont été les plus fiables pour évaluer la consistance du mortier sol:ciment; la table à secousses et l'essai au pénétromètre à cône ne conviennent pas. Les propriétés de rétention d'eau des mortiers en sol:ciment semblent bien assorties aux caractéristiques d'absorption d'eau des blocs typiques. Il existe un rapport étroit entre les résistances des mortiers et les taux de ciment et d'argile, mais, comme prévu, ces résistances sont moindres que la résistance moyenne des blocs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fitzmaurice, R., ‘Manual on Stabilised Soil Construction for Housing’ (United Nations, New York, 1958).Google Scholar
  2. [2]
    United Nations, ‘Soil-cement: Its use in building’ (United Nations, New York, 1964).Google Scholar
  3. [3]
    Houben, H. and Guillaud, H., ‘Earth Construction—A Comprehensive Guide’ (IT Publications, London, 1994).Google Scholar
  4. [4]
    Middleton, G.F. and Schneider, L.M., ‘Earch Wall Construction —Bulletin 5’, 4th edn (National Building Technology Centre. Sydney, 1987).Google Scholar
  5. [5]
    Smith, R.G., ‘Building with soil-cement bricks’,Building Research and Practice (March/April 1974) 98–102.Google Scholar
  6. [6]
    Olivier, M. and El Gharbi, Z., ‘Sisal fibre reinforced soil block masonry’, Proceedings of the Fourth International Masonry Conference, London, October, 1995 (British Masonary Society, Stoke-on-Trent, 1995), 55–58.Google Scholar
  7. [7]
    ‘Earthen Architecture’,Basin News, Issue 1 (1991) 5–10.Google Scholar
  8. [8]
    Spence, R.J.S. and Cook, D.J., ‘Building Materials in Developing Countries’ (John Wiley & Sons, London, 1983).Google Scholar
  9. [9]
    Heathcote, K., ‘Compressive strength of cement stabilised pressed earth blocks’,Building Research and Information 19 (2) (1991) 101–105.CrossRefGoogle Scholar
  10. [10]
    Walker, P.J., ‘Strength, durability and shrinkage characteristics of cement stabilised soil blocks’,Cement & Concrete Composites 17 (1995) 301–310.CrossRefGoogle Scholar
  11. [11]
    Lunt, M.G., ‘Stabilised soil blocks for building’, Overseas Building Notes (Building Research Establishment, Garston, 1980).Google Scholar
  12. [12]
    Mukerji, K., ‘Stabilisers and Mortars for Compressed Earth Blocks’ (GATE-ISAT, Eschborn, 1994).Google Scholar
  13. [13]
    Venu Madhava Rao, K., Venkatarama Reddy, B. V. and Jagadish, K.S., ‘Flexural bond strength of masonry using various blocks and mortars’,Mater. Struct. 29 (186) (1996) 119–124.CrossRefGoogle Scholar
  14. [14]
    Australian Standard 2701, ‘Methods of sampling and testing mottar for masonry construction’ (Standards Australia, Sydney, 1984).Google Scholar
  15. [15]
    Australian Standard 1289, ‘Methods of testing soils for engineering purposes’ (Standards Australia, Sydney, 1993).Google Scholar
  16. [16]
    Australian Standard 2733, ‘Concrete Masonry Units’ (Standards Australia, Sydney, 1984).Google Scholar
  17. [17]
    ASTM Standard D559, ‘Wetting and Drying Compacted Soilcement Mixtures’ (American Society for Testing and Materials, Philadelphia, 1989).Google Scholar
  18. [18]
    Baker, L.R., Lawrence, S.J. and Page, A.W., ‘Australian Masonry Manual’ (Deakin University Press, Melbourne, 1991).Google Scholar

Copyright information

© RILEM 1997

Authors and Affiliations

  • Peter Walker
    • 1
  • Trevor Stace
    • 1
  1. 1.Dept. of Resource EngineeringUniversity of New EnglandArmidaleAustralia

Personalised recommendations