algebra universalis

, Volume 6, Issue 1, pp 367–376 | Cite as

Infinitary jonsson algebras and partition relations

  • Fred Galvin
  • Karel Prikry


Partial Function Infinite Sequence Pure Math Measurable Cardinal Partial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Erdös andA. Hajnal,On a problem of B. Jonsson, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.14 (1966), 19–23.zbMATHMathSciNetGoogle Scholar
  2. [2]
    — and-—,On the structure of set-mappings, Acta Math. Acad. Sci. Hungar.9 (1958), 111–131.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    — and-—Unsolved problems in set theory, Axiomatic Set Theory. Amer. Math. Soc. Proc. Sympos. Pure. Math.13, Part 1 (1971), 17–48.zbMATHGoogle Scholar
  4. [4]
    ——, andR. Rado,Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar.16 (1965), 93–196.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Fred Galvin,Problem 5348, Amer. Math. Monthly72 (1965), 1136.MathSciNetGoogle Scholar
  6. [6]
    — andKarel Prikry,Borel sets and Ramsey's theorem, J. Symbolic Logic38 (1973), 193–198.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    L. Henkin,Some remarks on infinitely long formulas, Infinitistic, Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), pp. 167–183. Pergamon, Oxford: Panstwowe Wydawnictwo Naukowe, Warsaw; 1961.Google Scholar
  8. [8]
    Bjarni Jonsson,Some recent trends in general algebra, Proceedings of the Tarski Symposium, Amer. Math. Soc. Proc. Sympos. Pure Math.25 (1974), 1–19.zbMATHMathSciNetGoogle Scholar
  9. [9]
    E. M. Kleinberg,Strong partition properties for infinite cardinals, J. Symbolic Logic35 (1970), 410–428.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Kenneth Kunen,Elementary embeddings and infinitary combinatorics, J. Symbolic Logic36 (1971), 407–413.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Jerome Irving Malitz,Problems in the model theory of infinite languages, Ph.D. thesis, University of California, Berkeley, 1966.Google Scholar
  12. [12]
    Karel Prikry,Ideals and powers of cardinals, Bull. Amer. Math. Soc., to appear.Google Scholar
  13. [13]
    —, andRobert M. Solovay,On partitions into stationary sets, J. Symbolic Logic40 (1975), 75–80.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Robert M. Solovay,Real-valued measureable cardinals, Axiomatic Set Theory, Amer. Math. Soc. Proc. Sympos. Pure Math.13, Part 1 (1971), 397–428.zbMATHGoogle Scholar
  15. [15]
    —,Strongly compact cardinals and the GCH, Proceedings of the Tarski Symposium, Amer. Math. Soc. Proc. Sympos. Pure Math.25 (1974), 365–372.zbMATHMathSciNetGoogle Scholar
  16. [16]
    B. L. D. Thorp,Solution of problem 5348, Amer. Math. Monthly74 (1967), 730–731.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Thomas P. Whaley,Algebras satisfying the descending chain condition for subalgebras, Pacific J. Math.28 (1969), 217–223.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1976

Authors and Affiliations

  • Fred Galvin
    • 1
    • 2
  • Karel Prikry
    • 1
    • 2
  1. 1.University of KansasLawrenceUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations