Advertisement

algebra universalis

, Volume 6, Issue 1, pp 131–145 | Cite as

Abstract commutative ideal theory without chain condition

  • D. D. Anderson
Article

Keywords

Prime Ideal Commutative Ring Maximal Element Residuated Lattice Principal Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. D. Anderson,Multiplicative Lattices, Dissertation, University of Chicago, 1974.Google Scholar
  2. [2]
    —,A remark on the lattice of ideals of a Prüfer domain, Pacific J. Math.57 (1975), 323–324.zbMATHMathSciNetGoogle Scholar
  3. [3]
    —,Distributive Noether lattices Michigan Math. J.22 (1975), 109–115.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    D. D. Anderson, andE. W. Johnson,Weak join principal element lattices, Algebra Universalis (to appear).Google Scholar
  5. [5]
    K. P. Bogart,Structure theorems for regular local Noether lattices, Michigan Math. J.15 (1968), 167–176.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    —,Distributive local Noether lattices, Michigan Math. J.16 (1969), 215–223.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    R. P. Dilworth,Abstract commutative ideal theory, Pacific J. Math.12 (1962), 481–498.zbMATHMathSciNetGoogle Scholar
  8. [8]
    R. Gilmer,Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.zbMATHGoogle Scholar
  9. [9]
    M. F. Janowitz,Principal multiplicative lattices, Pacific J. Math.33 (1970), 653–656.zbMATHMathSciNetGoogle Scholar
  10. [10]
    E. W. Johnson,A-transforms and Hilbert functions in local lattices, Trans. Amer. Math. Soc.137 (1969), 125–139.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    E. W. Johnson,Join principal element lattices, Proc. Amer. Math. Soc. (to appear).Google Scholar
  12. [12]
    —, andJ. P. Lediaev,Representable distributive Noether lattices, Pacific J. Math.28 (1969), 561–564.zbMATHMathSciNetGoogle Scholar
  13. [13]
    — and—Join principal elements in Noether lattices, Proc. Amer. Math. Soc.36 (1962), 73–78.MathSciNetCrossRefGoogle Scholar
  14. [14]
    P. J. McCarthy,Principal elements of lattices of ideals, Proc. Amer. Math. Soc.30 (1971), 43–45.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Ward,Residuated distributive lattices, Duke Math. J.6 (1940), 641–651.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    — andR. P. Dilworth,Residuated lattices, Trans. Amer. Math. Soc.45 (1939), 335–354.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    —, and—,The lattice theory of ova. Ann. of Math.40 (1939), 600–608.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1976

Authors and Affiliations

  • D. D. Anderson
    • 1
    • 2
  1. 1.University of IowaIowa CityUSA
  2. 2.Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations