Materials and Structures

, 33:108

Le comportement viscoélastique du béton en traction et la compatibilité déformationnelle des réparations

  • B. Bissonnette
  • M. Pigeon
Rapports Scientifiques

Résumé

Le retrait de séchage est l'une des plus importantes causes de détérioration potentielles des réparations superficielles en béton. Les contraines de traction générées par le retrait restreint peuvent être soulagées par fluage, mais le comportement viscoélastique du béton en traction est mal connu. Cet article présente sous forme de synthèse les résultats les plus récents d'un projet de recherche en cours voué à la compréhension et la caractérisation de la compatibilité mécanique des réparations en béton. Pour ce faire, un vaste programme expérimental destiné principlament à l'étude du fluage en traction du béton a été entrepris au moyen de deux appereils conçus aux fins du projet. L'influence de plusieurs paramètres sur le fluage en traction a été étudiée, notamment le rapport eau/liant, le type de liant, le volume de pâte, l'entraînement nement d'air, le renforcement avec des fibres, la maturité et le niveau de contrainte. Les résultats obtenus démontrent que le fluage en traction est un phénomème significatif dont l'intensité est généralement davantage sensible aux paramètres de composition que ne l'est le retrait, laissant ainsi entrevoir la possibilité de concevoir des bétons de réparation optimisés aux fins de la compatibilité mécanique. En complémentarité avec les travaux expérimentaux, la construction d'un modèle analytique simplifié, basé sur la théorie de la diffusion non linéaire, a permis de confirmer l'importance du fluage sur l'intensité des contraintes induites par le retrait de séchage et, incidemment, sur la fissuration dans une couche de réparation superficielle. Les résultats des simulations effectuées à l'aide du modèle indiquent que la réponse d'une réparation au séchage est principalement influencée par le rapport fluage/retrait, l'amplitude du retrait ultime et les paramètres de conception tels l'épaisseur du resurfaçage et le degré de restriction externe.

Viscoelastic behavior of concrete in tension and dimensional compatibility of concrete repairs

Abstract

Drying shrinkage may be a significant cause of deterioration of thin concrete overlays. Shrinkage-induced stresses can at least partially be relieved by tensile creep, but our knowledge of this property is quite little. This paper summarizes some of the latest fidings of a research program aimed at understanding and characterizing the dimensional compatibility of concrete overlays through the study of tensile creep. A large test program was undertaken for that matter by means of two tensile creep apparatus developed for the purpose of the project. The influence of several parameters upon tensile creep was addressed including the effect of the water to cement ratio, the type of cement, the paste content, air entrainment, fibre reinforcement, the age at loading, and the level of stress. Tensile creep was found to be a very significant phenomenon and generally, it is more sensitive to the concrete mixture characteristics than drying shrinkage, implying that concretes intended for overlay works could effectively be designed in view of dimensional compatibility. A simplified analytical model, based on the non-linear diffusion theory, confirms the importance of the role played by creep in reducing shrinkage-induced stresses and, hence, the problems of cracking in concrete overlays. The simulations performed on this model shows that the behavior of the repaired element is mainly influenced by the relative specific creep to shrinkage ratio, the ultimate shrinkage, and the design parameters such as the depth of the overlay and the externat restraints.

Références

  1. [1]
    Saucier, F., ‘La Durabilité de l'adhérence des réparations en béton’, Thèse de doctorat, (Université Laval, Québec, Canada, 1990), 145 p.Google Scholar
  2. [2]
    Saucier, F. et Pigeon, M., ‘Durability of new-to-old concrete bondings’, in ‘Evaluation and Rehabilitation of Concrete Structures and Innovations in Design’, Compte-rendus de conférence, (V. M. Malhotra, Hong-Kong, 1991), ACI SP-128-43, 689–705.Google Scholar
  3. [3]
    Pigeon, M. et Saucier, F., ‘Durability of repaired concrete structures’, in ‘Advances in Concrete Technology’, Compte-rendus de conférence, (V. M. Malhotra, Athènes, 1992), 741–773.Google Scholar
  4. [4]
    Emmons, P. H. et Vaysburd, A. M., ‘Factors affecting the durability of concrete repair: the contractor's viewpoint’,Construction and Building Materials 8 (1) (1994) 5–16.CrossRefGoogle Scholar
  5. [5]
    Emmons, P. H. et Vaysburd, A. M., ‘Performance criteria for concrete repair materials, Phase I’, Technical Report REMRCS-47, US Army Corps of Engineers, Washington (DC), (1995), 123 p.Google Scholar
  6. [6]
    Morgan, D. R., ‘Compatibility of concrete repair materials and system’,Construction and Building Materials 10 (1) (1996) 57–67.CrossRefGoogle Scholar
  7. [7]
    Bissonnette, B. ‘Le fluage en traction: un aspect important de la problématique des réparations minces en béton’, Thèse de doctorat, (Université Laval, Québec, Canada, 1997), 290 p.Google Scholar
  8. [8]
    Felt, F. J., ‘Resurfacing and patching concrete pavement with bonded concrete’, Proceedings of the Highway Research Board, (1956), 444–469.Google Scholar
  9. [9]
    Bazant, Z. P., ‘Mathematical models for creep and shrinkage in concrete’, in ‘Creep and Shrinkage in Concrete Structure’, (Z. P. Bazant et F. H. Wittmann, Chichester, UK, 1982), Wiley & Sons.Google Scholar
  10. [10]
    Davis, R. E., Davis, H. E. et Brown, E. H., ‘Plastic flow and volume changes of concrete’,ASTM Proceedings 37 (Part 2) (1937) 317–330.Google Scholar
  11. [11]
    Glanville, W. H. et Thomas, F. G., ‘Studies in reinforced concrete-IV. Further investigations on creep or flow of concrete under load’, Building Research Technical Paper no. 21, Londres, (1939), 44 p.Google Scholar
  12. [12]
    L'Hermite, R. G., ‘What do we know about plastic deformation and creep of concrete?,RILEM Bulletin No.1 (1959) 21–51.Google Scholar
  13. [13]
    Illston, J. M., ‘The components of strain in concrete under sustained compressive stress’,Magazine of Concrete Research 17 (50) (1965) 21–28.Google Scholar
  14. [14]
    Brooks, J. J. et Neville, A. M., ‘A comparison of creep, clasticity and strength of concrete in tension and in compression’,29 (100) (1977) 131–141.Google Scholar
  15. [15]
    Neville, A. M., Dilger, W. et Brooks, J. J., ‘Creep of plain and structural concrete’, (Construction Press, Londres, 1983), 361 p.Google Scholar
  16. [16]
    Domone, P. L., ‘Uniaxial tensile creep and failure of concrete’,Magazine of Concrete Research 26 (88) (1974) 144–152.Google Scholar
  17. [17]
    Cook, D. J., ‘Some aspects of the mechanism of tensile creep in concrete’,ACI Journal 69 (10) (1972) 645–649.Google Scholar
  18. [18]
    Gamble, B. R. et Parrott, L. J., ‘Creep of concrete in compression during drying and wetting,’Magazine of Concrete Research 30 (104) (1978) 129–138.CrossRefGoogle Scholar
  19. [19]
    El-Baroudy, H. F., ‘The strength, shrinkage and creep of concrete as affecting the design of reinforced concrete structures containing liquid’, Thèse de doctorat, (University of London, London, 1940), 322 p. (tiré de Ward et Cook 1969)Google Scholar
  20. [20]
    Ward, M. A. et Cook, D. J., ‘The mechanism of tensile creep in concrete’,Magazine of Concrete Research 21 (68) (1969) 151–158.Google Scholar
  21. [21]
    Al-Kubaisy, M. A. et Young, A. G., ‘Failure of concrete under sustained tension’,Ibid. 27 (92) (1975) 171–178.Google Scholar
  22. [22]
    Janssen, D. J., ‘Moisture in Portland cement concrete’,Transportation Research Record 1121 (1987) 40–44.Google Scholar
  23. [23]
    Bérubé, M.-A., Chouinard, D., Frenette, J., Rivest, M. et Vézina, D., ‘Effectiveness of sealers in counteracting ASR in highway median barriers exposed to wetting and drying, freezing and thawing, and deicing salt’, in ‘6th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete’, Compte-rendus de conférence, (CANMET/ACI, Bangkok, Thailande, juin 1998), ACI SP-178, 19p.Google Scholar
  24. [24]
    de Larrard, F., ‘Creep and shrinkage of high strength field concretes’, in 2nd International Conference on Utilization of High-Strength Concrete’, Compte-rendus de conférence, (McGraw-Hill, Berkeley, USA, 1990), ACI SP-121.Google Scholar

Copyright information

© RILEM 2000

Authors and Affiliations

  • B. Bissonnette
    • 1
  • M. Pigeon
    • 1
  1. 1.Département de génie civilCentre de Recherche Interuniversitaire sur le Béton, Université LavalQuébecCanada

Personalised recommendations