algebra universalis

, Volume 12, Issue 1, pp 81–92 | Cite as

Sets of natural numbers of positive density and cylindric set algebras of dimension 2

  • Paul Erdös
  • Vance Faber
  • Jean Larson


Natural Number Boolean Algebra Finite Subset Algebra UNIV Positive Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. R. Bendarek andS. M. Ulam,Generators for algebras of relations, Bull. Amer. Math. Soc.82 (1976), 781–782.MathSciNetCrossRefGoogle Scholar
  2. [2]
    G. Bergman,The rank of a two-dimensional cylindric set algebra, Proc. Colloquium on Universal Algebra, Esztergom, 1977.Google Scholar
  3. [3]
    L. H. Chin andA. Tarski,Remarks on projective algebras, Bul. Amer. Math. Soc.54 (1948) 80–81.Google Scholar
  4. [4]
    S. Comer, private communication.Google Scholar
  5. [5]
    C. J. Everett andS. M. Ulam,Projective algebra I, Amer. J. Math.68 (1946), 77–88.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    L. Henkin, private communication.Google Scholar
  7. [7]
    L. Henkin, J. D. Monk andA. Tarski,Cylindric Algebras, Part I, North-Holland, 1971.Google Scholar
  8. [8]
    J. Larson, in preparation.Google Scholar
  9. [9]
    K. Prikry, private communication.Google Scholar
  10. [10]
    C. L. Stewart andR. Tuderman,On infinite difference sets, Preprint.Google Scholar
  11. [11]
    S. M. Ulam,A Collection of Mathematical Problems, Wiley (Interscience), New York (1960).zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • Paul Erdös
    • 1
    • 2
  • Vance Faber
    • 1
    • 2
  • Jean Larson
    • 1
    • 2
  1. 1.University of ColoradoBoulderU.S.A.
  2. 2.University of FloridaGainesvilleU.S.A.

Personalised recommendations