Advertisement

algebra universalis

, Volume 11, Issue 1, pp 213–219 | Cite as

Varieties with equationally definable principal congruences

  • Peter Köhler
  • Don Pigozzi
Article

Keywords

Variety Versus Congruence Relation Principal Congruence Restricted Sense Filtral Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Baker,Definable normal closures in locally finite varieties of groups, Preprint.Google Scholar
  2. [2]
    R. Balbes andPh. Dwinger,Distributive Lattices, Columbia 1975.Google Scholar
  3. [3]
    J. Baldwin andJ. Berman,The number of subdirectly irreducible algebras in a variety, Algebra Univ.5 (1975), 379–389.zbMATHMathSciNetGoogle Scholar
  4. [4]
    J. Berman andG. Grätzer,Uniform representations of congruences schemes, Pac. J. Mathematics76 (1978), 301–311.zbMATHGoogle Scholar
  5. [5]
    W. Blok,The lattice of modal logics. An algebraic investigation, J. Symb. Logic, to appear.Google Scholar
  6. [6]
    S. Burris,An example concerning definable principal congruences, Algebra Univ.7 (1977), 403–404.zbMATHMathSciNetGoogle Scholar
  7. [7]
    S. Burris, andJ. Lawrence,Definable principal congruences in varieties of groups and rings, Algebra Univ.9 (1979), 152–164.zbMATHMathSciNetGoogle Scholar
  8. [8]
    A. Day,A note on the congruence extension property, Algebra Univ.1 (1971), 234–235.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    E. Fried, G. Grätzer, andR. Quackenbush,Uniform congruence schemes, Preprint.Google Scholar
  10. [10]
    G. Grätzer,Universal Algebra, 2nd expanded ed., Berlin-Heidelberg-New York 1979.Google Scholar
  11. [11]
    R. McKenzie,Para primal varieties: A study of finite axiomatizibility and definable principal congruences in locally finite varieties, Algebra Univ.8 (1978), 336–348.zbMATHMathSciNetGoogle Scholar
  12. [12]
    W. C. Nemitz,Implicative semi-lattices, Trans. Amer. Math. Soc.117 (1965), 128–142.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    W. C. Nemitz,On the lattice of filters of an implicative semilattice, J. Math. Mechanics18 (1969), 683–688.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • Peter Köhler
    • 1
  • Don Pigozzi
    • 1
  1. 1.University of ManitobaWinnipegCanada

Personalised recommendations