algebra universalis

, Volume 11, Issue 1, pp 28–41 | Cite as

Equationally complete (m, n) rings

  • J. J. Leeson
  • A. T. Butson


It is shown that every super-simple (m, n) ring is equationally complete. The atomic varieties of (m, 2) rings and the atomic varieties of (2,n) rings are completely determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Birkhoff, G.,Lattice Theory, Amer. Math. Soc. Coll. Pub. Vol. XXV., 1967.Google Scholar
  2. [2]
    Clark, D. M., andP. H. Krauss,Para Primal Algebras, Algebra Universalis,6 (1976), 165–192.MATHMathSciNetGoogle Scholar
  3. [3]
    Cohn, P. M.,Universal Algebra, Harper, New York, 1965.MATHGoogle Scholar
  4. [4]
    Crombez, G.,On (n, m)-rings, Abh. Math. Sem. Univ. Hamburg,37 (1972), 180–199.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Kalicki, J. andD. Scott,Equational Completeness of Abstract Algebras, Indag. Math.17 (1955), 650–659.MathSciNetGoogle Scholar
  6. [6]
    Kaplansky, I.,Commutative Rings, Allyn & Bacon, Inc., Boston, 1970.MATHGoogle Scholar
  7. [7]
    Leeson, J. J. andA. T. Butson,On the general theory of (m, n) rings, Algebra Universalis,11 (1980), 42–76.MATHMathSciNetGoogle Scholar
  8. [8]
    Monk, J. D. andF. M. Sioson,On the general theory of m-groups, Fund. Math.,72 (1971), 233–244.MATHMathSciNetGoogle Scholar
  9. [9]
    Neumann, H.,Varieties of Groups, Springer Verlag, New York, 1967.MATHGoogle Scholar
  10. [10]
    Orr, G. F.,The lattice of varieties of semirings, doctoral Dissertation, Univ. of Miami, 1973.Google Scholar
  11. [11]
    Page, W. F.,The lattice of equational classes of m-semigroups, Doctoral Dissertation, Univ. of Miami, 1973.Google Scholar
  12. [12]
    Tarski, A.,Equationally complete rings and relation algebras, Indag. Math.,18 (1956), 39–46.MathSciNetGoogle Scholar
  13. [13]
    Taylor, W.,The Fine Spectrum of a Variety, Algebra Universalis,5 (1975), 263–303.MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • J. J. Leeson
    • 1
    • 2
  • A. T. Butson
    • 1
    • 2
  1. 1.University of North FloridaJacksonvilleUSA
  2. 2.University of MiamiCoral GablesUSA

Personalised recommendations