Annals of the Institute of Statistical Mathematics

, Volume 36, Issue 3, pp 451–453

# A note on equal distributions

• Gwo Dong Lin
Article

## Summary

It is known that the set
$$\left\{ {E\left( {X_{k_n ,n} } \right)\left| {n = 1,2, \cdots } \right.} \right\}, where 1 \leqq k_n \leqq n,$$
of expectations of order statistics of samples from a distributionF which has a finite expectation determinesF. In this note, we show that each of the sets
$$\begin{gathered} \left\{ {E\left( {X_{k_j ,n_j } } \right)\left| {j = 1,2, \cdots } \right.} \right\}, \hfill \\ where \left\{ {\left( {{{k_j } \mathord{\left/ {\vphantom {{k_j } {n_j }}} \right. \kern-\nulldelimiterspace} {n_j }}} \right)\left| {j = 1,2, \ldots } \right.} \right\} is dense in \left[ {0,1} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} \left\{ {E\left( {X_{1,1} } \right)} \right\} \cup \left\{ {E\left( {X_{k_j ,2j + 1} } \right)\left| {j = 1,2, \cdots } \right.} \right\} \cup \hfill \\ \left\{ {E\left( {X_{k'j,2j + 1} } \right)\left| {j = 1,2, \cdots } \right.} \right\},where 1 \leqq k_j< k'_j \leqq 2j + 1, \hfill \\ \end{gathered}$$
also determinesF.

## AMS 1980 subject classifications

Primary 62E10 Secondary 30B60

## Key words and phrases

Distribution determine dense completeness and order statistics

## References

1. [1]
Arnold, B. C. and Meeden, G. (1975). Characterization of distribution by sets of moments of order statistics,Ann. Statist.,3, 754–758.
2. [2]
Hoeffding, W. (1953). On the distribution of the expected values of the order statistics,Ann. Math. Statist.,24, 93–100.
3. [3]
Huang, J. S. and Hwang, J. S. (1975).L 1-completeness of a class of Beta distributions,Statistical Distribution in Scientific Work,3, 137–141.Google Scholar
4. [4]
Hwang, J. S. (1978). A note on Bernstein and Müntz-Szász Theorems with applications to the order statistics,Ann. Inst. Statist. Math.,30, A, 167–176.
5. [5]
Pollak, M. (1973). On equal distributions,Ann. Statist.,1, 180–182.