Materials and Structures

, Volume 32, Issue 9, pp 663–672 | Cite as

Serviceability characteristics of flowing repairs to propped and unpropped bridge structures

  • P. S. Mangat
  • F. J. O'Flaherty
Scientific Reports

Abstract

The paper presents the results of a field investigation of repairs to Sutherland Street Bridge on B6080 in Sheffield, England. Flowing repair materials were used to apply large patch repairs to propped and unpropped columns of the bridge. Watertight shuttering was securely attached to the structure and flowing repair materials were either pumped or poured into the shuttering. The elastic modulus of the repair materials (Erm) used was greater than that of the substrate concrete (Esub).

The results show that free shrinkage of the repair patch is effectively transferred to the substrate when Erm>Esub and the risk of restrained shrinkage cracking is reduced. In a propped repair, long-term strain distributions in the repair patch are erratic and are predominantly governed by the depropping process; properties of the repair materials only have a secondary influence. The repair patches applied with flowing materials did not, in the 60 week monitoring period, redistribute any significant external loading from the substrate member.

Résumé

Ce document présente les résultats d'une étude sur terrain, concernant la réparation du pont de Sutherland Street sur la B6080 à Sheffield. Des matériaux de réparation plastiques ont été utilisé pour appliquer de larges pièces de réparation dans le but d'étayer et désétayer les poteaux du pont. Des coffrages étanches étaient attachés à la structure et les matériaux plastiques de réparation étaient pompés ou coulés dans le coffrage. Le module élastique des matériaux de réparation (Erm) utilisés était plus grand que celui du béton d'origine (Esub).

Les résultats montrent que le retrait libre des pièces de réparation est effectivement transféré au béton d'origine quand Erm>Esub et que le risque d'avoir des fissures est réduit. Pour le béton coulé, les répartitions des efforts à long terme dans les pièces de réparation sont irregulières et principalement gouvernées par la procédure d'étayment; les propriétés des matériaux de réparation ont seulement une influence secondaire. Les pièces de réparation appliquées avec des matériaux plastiques ne redistribuent pas à long terme les charges externes venant de la partie d'origine.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Department of Transport (1986), Materials for the repair of concrete highway structures, BD27/86.Google Scholar
  2. [2]
    Standard specifications for Repair of concrete, U.S. Department of the Interior, Bureau of Reclamation, Denver, M470000. 296.Google Scholar
  3. [3]
    Wood, J. G. M., King, E. S. and Leek, D. S., ‘Defining the properties of concrete repair materials for effective structural applications’, International Conference on Structural Faults and Repair −89, 2, London, 1989.Google Scholar
  4. [4]
    Dector, M. H. and Lambe, R. W., ‘New materials for concrete repair—development and testing’,The Indian Concrete Journal (October 1993) 475–480.Google Scholar
  5. [5]
    The Concrete Society, ‘Patch Repair of Reinforced Concrete Subject to Reinforcement Corrosion, Model Specifications and Method of Measurement’, Concrete Society Technical Report No. 38, 1991, ISBN 094669137.1.Google Scholar
  6. [6]
    Mangat, P. S. and Limbachiya, M. C., ‘Repair material properties which influence long-term performance of concrete structures’,Construction and Building Materials 9 (2) (1995) 81–90.CrossRefGoogle Scholar
  7. [7]
    Mangat, P. S. and Limbachiya, M. C., ‘Repair material properties for effective structural applications’,Cement and Concrete Research 27 (4) (1997) 601–617.CrossRefGoogle Scholar
  8. [8]
    Mangat, P. S. and O'Flaherty, F. J., Keynote paper, ‘Long-term Performance Criteria for Concrete Repair Materials’, Proc. International Congress, Creating with Concrete, Concrete Durability and Repair Technology, University of Dundee, 6–10, September 1999.Google Scholar
  9. [9]
    Mangat, P. S. and O'Flaherty, F. J., ‘Long-term performance of high stiffness repairs in highway structures’,Magazine of Concrete Research, In Press.Google Scholar
  10. [10]
    Mangat, P. S. and O'Flaherty, F. J., ‘Influence of elastic modulus on stress redistribution and cracking in repair patches’,Cement and Concrete Research, In Press.Google Scholar
  11. [11]
    BSI, London, BS1881, Part 121, 1983, ‘Method for Determination of Static Modulus of Elasticity in Compression’.Google Scholar
  12. [12]
    BSI, London, BS1881, Part 116, 1983, ‘Method for Determination of Compressive Strength of Concrete Cubes’,Google Scholar
  13. [13]
    Kong, F. K. and Evans R. H. ‘Reinforced and Prestressed Concrete’, 3rd Ed. 1987, Van Nostrand Reinhold (UK) Co. Ltd.Google Scholar

Copyright information

© RILEM 1999

Authors and Affiliations

  • P. S. Mangat
    • 1
  • F. J. O'Flaherty
    • 1
  1. 1.School of ConstructionSheffield Hallam UniversitySheffieldUK

Personalised recommendations